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Reshaping Elastic Nanotubes via Self-Assembly of Surface-Adhesive Nanoparticles
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Elastic sheets with macroscopic dimensions are easy to deform by bending and stretching. Yet shaping
nanometric sheets by mechanical manipulation is hard. Here we show that nanoparticle self-assembly
could be used to this end. We demonstrate that spherical nanoparticles adhering to the outer surface of an

elastic nanotube can self-assemble into linear structures: rings or helices on stretchable nanotubes, and

axial strings on nanotubes with high rigidity to stretching. These self-assembled structures are inextricably
linked to a variety of deformed nanotube profiles, which can be controlled by tuning the concentration of
nanoparticles, the nanoparticle-nanotube diameter ratio and the elastic properties of the nanotube. Our
results open the possibility of designing nanoparticle-laden tubular nanostructures with tailored shapes,

for potential applications in materials science and nanomedicine.
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Direct mechanical manipulation can make macroscopic
sheets conform to specific shapes. However, it is difficult to
use mechanical means to reshape sheets with sizes in the
micrometer range and smaller. An alternative at submicro-
metric scales would be the use of adhesive nanoparticles
that induce local deformation and may catalyze global
shape changes. Indeed, nanoparticles have been shown to
drive the folding of graphene [1], of thin films of silicon [2]
and carbon nanotubes [3], the budding of fluid membranes
by protein aggregation [4,5], and the deformation of
vesicles via the adhesion of nanoparticles [6,7].

When nanoparticles adhere and deform a surface, effec-
tive, curvature-mediated nanoparticle interactions arise as
a result of the tendency of the surface to minimize the
deformation caused by the nanoparticle imprints. One of
the first studies of curvature-mediated interactions was that
of Goulian and colleagues [8], who calculated such effects
in the context of protein aggregation in biological mem-
branes. The effective pair interaction in fluid membranes is
usually isotropic, has a Casimir-like functional dependence
on particle separation [9] and a nontrivial dependence on
the protein shape. However, for elastic (tethered) surfaces,
the overall effect of the forces at play is more complicated.
Unlike fluid surfaces, which cannot withstand shear, elastic
thin sheets can stretch in response to the forces applied by
strongly adhering nanoparticles. If the nanoparticles are
able to diffuse on the sheet, they should be able to self-
assemble in a configuration that reduces the mechanical
cost of deforming the surface. However, the stretching
energy associated with tethered surfaces imposes global
geometric constraints to nanoparticle arrangements, and
this leads to nontrivial many-body effects that extend
across the surface. We expect the effective nanoparticle
interactions to depend on the bending and stretching rigidi-
ties of the surface, its topology, and the relative location
and specific extent of the local deformations imprinted by
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the nanoparticles. As a result, a significantly different—
and phenomenologically richer—behavior emerges when
nanoparticles aggregate on elastic surfaces rather than in
fluid interfaces. Clearly, for multiple indenting (adhering)
nanoparticles, one expects that the shape of the deformed
surface is inextricably linked to the configuration of the
adhered nanoparticles. Here, we use computer simulation
to demonstrate that nanoparticles adhering and locally
deforming the surface of an elastic nanotube can self-
assemble into linear structures which themselves cause
the global reshape of the nanotube. Our results suggest a
new, nanoparticle-based route to design the effective elas-
tic properties and the overall shape of a flexible surface.
To this aim, we considered a simple, coarse-grained
model of an elastic nanotube with bending and stretching
deformation modes, and of adhesive spherical nanopar-
ticles (smaller than the tube radius) which adhere to the
nanotube via a generic short-range potential acting be-
tween any nanoparticle and the surface. Monte Carlo simu-
lations of this model show that, for a wide range of
nanoparticle-nanotube diameter ratios, nanoparticles ar-
range into one-dimensional strings. Moreover, the strings
acquire a preferential orientation which depends on the
elastic rigidity of the nanotube: on stretchable nanotubes,
strings of nanoparticles arrange as rings or helices; on
nanotubes with high rigidity to stretching they form axial
strings. We analyzed these arrangements as a function of
bending rigidity, nanoparticle area-density (that is, the
relative area of the surface covered by nanoparticles) and
the average nanoparticle bound area. We also find that the
cross-sectional profile of the nanotube can be shaped into
ellipsoidal, triangular, rectangular and other regular and
irregular forms, depending on the number and orientation
of the self-assembled strings, the nanoparticle-nanotube
diameter ratio and the elastic properties of the nanotube.
Overall, our results suggest that nanoparticle organization

© 2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.106.045702

PRL 106, 045702 (2011)

PHYSICAL REVIEW LETTERS

week ending
28 JANUARY 2011

FIG. 1 (color online). Detail of the particle (left) and
triangulated-surface (right) representations of the nanoparticle-
nanotube system. Nanotubes are made of hexagonally arranged
beads of diameter o. Nanoparticles have a diameter of 100 and
interact with the beads with energy per bead € when a bead is
within a distance 2¢ from the nanoparticle surface. The nano-
particle bound area (bottom, shaded) is defined by the triangles
whose all three vertices fall within the annular volume defined
by the excluded volume of the particles and a sphere of radius
6.50. We report the nanoparticle bound area as the average
value, A, for all nanoparticles bound to the nanotube and as a
percentage of the nanoparticle surface.

and surface deformation can be controlled by tuning the
concentration of adhesive nanoparticles and the mechani-
cal properties of the surface.

We modeled the elastic surface following a beads-and-
string scheme [10]. The nanotube consists of a triangulated
surface of hard beads connected by elastic links and ar-
ranged in a hexagonal lattice with an overall cylindrical
shape, as sketched in Fig. 1. The triangulation of the net-
work allows for an easy computation of elastic energies,
with rigidities to bending and stretching, k and «p, respec-
tively, characterizing the resistance to elastic deformation
of the nanotube. The nanoparticles are described as hard
spheres, and interact with the surface beads with a maxi-
mum energy per bead, €. Beads and nanoparticles do not
interact with spheres of their own type, besides satisfying
excluded volume constraints. We define the total energy of
the model as the sum the Helfrich bending elasticity, the
stretching energy of links, and a nanoparticle-surface-
adhesive potential, which are written as
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The discretized bending term has been used before [4,11],
and is the sum of the bending energies of all triangle pairs
of the surface. r;; is the length of the link connecting
vertices i and j; m;; and nj; are the unit normal vectors to
the triangles sharing that link; and Y jAij the sum of the

areas of the triangles sharing vertex i. We describe the

stretching contribution with a Finitely Extensible
Nonlinear Elastic (FENE) potential [12], where [ is the
zero-energy length of a link and /,, = 30 its maximum
length. We have chosen [/, = 1.229¢, which corresponds
to an area fraction for the beads of 60% [13]. This means
that a nanoparticle of 100 in diameter with A, = 5% is
bound to 15 beads approximately. The adhesion term is a
ramp well potential acting between each nanoparticle-bead
pair, with a tangent distance A, = 5.5¢. For convenience
we chose A, = 6.50 and A,, = 7.50. We have seen that
the specific shape of the adhesive term of the potential does
not affect qualitatively our results, provided that the po-
tential is short-ranged [14].

Clearly, both elastic constants and the adhesion energy
per bead affect the extent of the deformation. We find that a
convenient geometric parameter to characterize deforma-
tion is the average nanoparticle area that is bound to the
nanotube (see caption of Fig. 1 for a precise definition). We
simulate the nanotube with a periodic boundary in the
direction parallel to its longitudinal axis x, and use periodic
boundaries in the three Cartesian coordinates for the nano-
particles. The initial configuration consists of an unper-
turbed nanotube, and of nanoparticles randomly placed in
the simulation box. Monte Carlo moves at constant number
of particles and temperature sample the configurational
space by attempting changes in the position of vertices
and nanoparticles. In order to allow for stretch-free con-
figurations, changes in the length of the box parallel to the
nanotube axis were also attempted, with constant pressure
P, = 0. The results presented in this work correspond to
simulations with nanoparticles of 100 in diameter.
Additionally, we have simulated systems with larger,
150-nanoparticles at various points in the parameter space,
and have also compared our results to a similar simulation
model [15]. System-size and surface-discretization effects
do not appear to be significant. It is important to point out
that the nanoparticle area-density affects self-assembly and
deformation. Indeed, we observe that a nanoparticle area-
density larger than = 0.2 is necessary for the nanoparticles
to aggregate into linear structures. As the area-density
increases, the linear structures become progressively inter-
connected, approaching the limit of homogeneous nano-
particle coverage. In this study we have focused in the
intermediate area-density regime, for which considerable
deformation and a larger degree of nanotube shapes can be
accessed.

The average nanoparticle bound area controls the degree
of deformation of the nanotube. For 20 = «k =< 80kzT and
A, = 5%, the elastic energy associated with the nanopar-
ticle imprints is of the order of the thermal energy of the
beads, and the nanoparticles can explore the entire surface
on the nanotube. As A, increases, nanoparticles bound to
the surface become less mobile. When 4% = A, < 10%,
we observed that nanoparticles spontaneously organize
into linear structures. For A, = 10%, the adhesive energy
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FIG. 2 (color online). Nanoparticles self-assemble into or-
dered linear structures at moderate adhesive strength, switching
orientation from rings and helices to axial strings when the
stretching rigidity is such that the stretching energy is approxi-
mately 1kgT per bead. The boundaries of the simulated nano-
tubes match up to avoid boundary effects.

needed to reach such bound area becomes larger than
10kzT per nanoparticle, and this makes the nanoparticle
mobility on the surface too slow for the simulations to
reach equilibrium within our simulation time frame. This is
schematically depicted in Fig. 2, where we also describe
the self-assembled linear structures as a function of stretch-
ing rigidity. For fairly stretchable nanotubes, nanoparticles
self-assemble into rings and helices, which can coexist on
the same nanotube. For slightly less stretchable tubes, for
which the stretching energy per bead is below = 1kzT,
linear aggregates are shorter and their orientation can span
all possible angles, although we have seen a preference for
radial and axial orientations. Above that energy, we see
preferentially axial arrangements.

Axial strings are essentially stretch-free configurations.
Indeed, a nanotube completely rigid to stretching cannot
accommodate nanoparticle rings or helices because these
configurations necessarily involve double-curvature im-
prints, which have a stretching penalty. But the rigid nano-
tube can deform around axial strings by curving only in
the radial direction. This is why axial strings only appear
above 1kzT in stretching energy per bead. Indeed, there is a
moderately sharp transition from the bending-dominated
regime—for which rings and helices are the bending-
minimizing configurations—to the stretching-dominated
regime, in which the minimization of stretching energy
becomes dominant. We believe that the fact that the
transition between the two regimes takes place within a

a
b" N ¢ 7 T T T T
@ .
3
3o
c
T 4+
g
23
p (0]
P . 5ot °
y 1k
3 (
1 1 1 1

0 02 04 06 08
Stretching energy

FIG. 3 (color online). (a)—(b) cross-sectional cuts of deformed
nanotubes. Symbols locate the corresponding energies in (c).
Nanoparticles have not been drawn for clarity. (c) adhesion-
stretching energies of configurations with axial strings (squares).
One point corresponding to a helix (circle) is shown for com-
parison. Energies are given in units of k3T per bead. The straight
line is a fit to simulation data of axial strings with an (unde-
formed) nanotube-nanoparticle diameter ratio in the interval
1.017-2.033, with 15-55 nanoparticles, A, in the 5%—-8% range,
and bending and stretching rigidities within 20-100kp7T and
120-960k,T/ 0.

relatively small range of stretching energies has its origin
in the high relative cost of stretching with respect to bend-
ing. Indeed, the stretching-to-bending energy ratio due to
an indentation of depth /% in a thin shell of thickness 7 can
be written as E,/E, ~ (h/t)*> ~ kp/kh?* [16]. This is also
applicable to a nanotube with radius R as long as 7 < R.
Clearly, for sufficiently thin surfaces, the stretching energy
cost overwhelms that of the bending, effectively imposing
a global constraint on the possible deformations of the
nanotube.

Next we discuss the shapes of the deformed nanotubes
mediated by the linear aggregation of the nanoparticles
bound to it, and also the connection between nanoparticle
self-assembly and the shape of the nanotube. Figure 3(a)
shows two nanotube profiles: one with a helically shaped
string of nanoparticles and another with four, almost-parallel
axial nanoparticle strings. Ring and helical structures induce
a screwlike type of deformation on the nanotube. Axial
strings, however, induce a larger variety of shapes, which
can also show constrictions along the nanotube axis if the
strings are not fully parallel. Figure 3(b) shows four different
shapes corresponding to two (ellipsoidal profile), three (tri-
angular profile) and four (square and bow-tie profiles) par-
allel axial strings. The more bent the nanotube profile is, the
larger the adhesive energy per bead of the configuration, as
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FIG. 4 (color online). Snapshots of nanotube profiles with high
rigidity to stretching, for which nanoparticles self-assemble into
axial strings. The strings have been constrained to span the
length of the tube and to contain the same number of nano-
particles each. The profiles thus have a uniform shape in the axial
direction. Profiles in the leftmost column have been drawn twice
as big for clarity. For all profiles the nanoparticle radius is 100,
Kk = 40kgT, kp = 500kgT/c?, and A, = 10%.

can be seen in Fig. 3(c). This figure also shows that stretch-
ing the surface above 1kzT per bead comes at a very steep
cost in adhesion. This is largely due to the fact that the
surface wrapping an axial string does not form an entirely
straight channel, but follows the curvature of the individual
nanoparticles forming the string.

Figure 3 suggests that, for the stretching-dominated
regime, the shape of the nanotube can be controlled by
the area-density of nanoparticles (or analogously, the num-
ber of axial strings) and the nanotube-nanoparticle diame-
ter ratio. Figure 4 illustrates this by showing snapshots of
the profiles obtained varying these two geometric parame-
ters at constant bound area and elastic rigidities. We see
that the profiles are fairly symmetrical but for the higher
number of axial strings, for which the shape can presum-
ably get trapped in metastable configurations. Also, a
sufficiently high number of axial strings can cause a nano-
tube to collapse.

By altering the profile of the nanotube, one has
direct access to the effective bending rigidity of the
nanoparticle-nanotube composite in the axial direction,
as such rigidity depends linearly on the tube’s cross-
sectional moment of inertia. Furthermore, it should be
possible to reversibly switch nanoparticle self-assembly
on and off in experiments—for instance by tuning tem-
perature, or by exploiting electrostatic or depletion inter-
actions. Controlling nanotube shape may be relevant to
applications of tubular nanomaterials [17-19], of bioactive

nanotubes [20], and in microfluidics [21]. We believe that
experimental systems in which the here described coupling
between nanoparticle self-assembly and nanotube defor-
mation occurs can be readily realized. Also, our approach
may inspire alternative routes to manipulating the folding
of thin films of silicon for photovoltaic applications [2].
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