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Based on numerical and perturbation series arguments we conjecture that for certain critical random

matrix models the information dimension of eigenfunctions D1 and the spectral compressibility � are

related by the simple equation �þD1=d ¼ 1, where d is system dimensionality.
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Introduction.—Recently, there has been considerable
interest in the investigation of critical random matrix en-
sembles (CrRME) (see [1–3] and references therein).
CrRME are described by N � N matrices Mmn whose
characteristic feature is the slow decrease of off-diagonal
matrix elements [4]

Mmn � jm� nj�1: (1)

Such ensembles were introduced to model the Anderson
transition of electrons in a disordered potential. The tran-
sition occurs between localized and extended states. Let
�ð�Þ and �mð�Þ denote the eigenvalues and eigenfunc-
tions ofMmn. Localization properties of eigenfunctions can
be described by a set of multifractal dimensionsDq defined

by

�XN
j¼1

j�jð�Þj2q
�

�
N!1N

�ðq�1ÞDq; (2)

where h. . .i is the average over some eigenvalue window
and over random realizations of the matrix. For localized
states all Dq are equal to 0, while for states delocalized

over the whole d-dimensional space Dq ¼ d; for CrRME,

states are multifractal and Dq are nontrivial functions of q.

Statistical properties of the eigenvalues of CrRME can be
described by the level compressibility �. It is defined from
the limiting behavior of the spectral number variance

�ð2ÞðLÞ ¼ hnðLÞ2i � hnðLÞi2 �
L!1�L; (3)

where nðLÞ is the number of eigenvalues in an interval L
(the spectrum is unfolded with mean level spacing 1, so that
hnðLÞi ¼ L). For the Poisson statistics of independent ran-
dom variables � ¼ 1, while for standard random matrix
ensembles� ¼ 0; typically for CrRME one has 0<�< 1.

Multifractal dimensions Dq are related with eigenfunc-

tions, while compressibility � is related with eigenvalues.
Thus there is no obvious relation between them.
Nevertheless in [5] it was argued that for d-dimensional
systems one should have 2�þD2=d ¼ 1. Later, it was
understood that this relation is valid, in general, only in
a weak multifractality regime, i.e., at first order in the

deviation from the usual random matrix limit D2 ¼ d,
� ¼ 0 [6–8].
In this Letter we argue that, for three different one-

dimensional CrRME considered below as well as for cer-
tain two- and three-dimensional systems, the following
relation holds:

�þD1=d ¼ 1: (4)

Here D1 is the information dimension, corresponding to
the mean eigenfunction entropy averaged over the same
window as in (3)

�
�XN

j¼1

j�jð�Þj2 lnj�jð�Þj2
�

�
N!1D1 lnN: (5)

We are not aware of general analytical arguments in favor of
the conjecture (4), as the fractal dimensions are not directly
accessible for analytical calculations. Nevertheless, a per-
turbation series approach provides an analytical way to
them. There exist two regimes of perturbation series: strong
multifractality when Dq is closed to the Poisson value,

Dq � 1, and weak multifractality when Dq is near the

random matrix value, d�Dq � 1 [8]. Note that in the

two extreme cases of Poisson and usual random matrices,
(4) is trivially verified. For all CrRME with d ¼ 1 consid-
ered below we checked analytically that at first order of the
perturbation series the fractal dimensions have the universal
form

Dq ¼
8><
>:
�ðq� 1=2Þffiffiffiffi

�
p

�ðqÞ ð1� �Þ for 1� � � 1;

1� q� for � � 1

(6)

in a certain range of values of q. Thus (4) is valid at leading
order of perturbation series. To check relation (4) for inter-
mediate values we performed careful numerical computa-
tions of bothD1 and�. Themain result is that with available
numerical precision no contradiction with our conjecture
has been observed.
Critical power-law random banded matrices.—The

most investigated CrRME is the ensemble of critical
power-law banded random matrices (PLBRM) [1–3,6–8].
This is the ensemble of N � N matrices (real symmetric
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for � ¼ 1 and complex Hermitian for � ¼ 2) whose ma-
trix elements are independent random Gaussian variables
with zero mean and variance (depending on a parameter b)
given by hjHnnj2i ¼ ��1 and for m � n

hjHmnj2i ¼ 1

2

�
1þ

�
m� n

b

�
2
��1

: (7)

In both perturbative regimes of large and small b, the
fractal dimensions and the level compressibility have
been calculated at first order [2,8], and it is easy to check
that in these regimes (6) is fulfilled for this model. The
second order terms at small b for � and D2 have been
calculated in [6,7] respectively but the result for D1 is yet
unknown.

To check the conjecture (4) for intermediate values of b
we perform numerical calculations ofD1 and� for a critical
PLBRM where to reduce boundary effects the term m� n
in (7) is replaced byN=� sinððm� nÞ�=NÞ [7]. The fractal
dimensionD1 is extracted from a fit of the mean entropy (5)
of the form aþD1 lnN þ b=N. The mean and variance of
the entropy are calculated for eigenvectors of PLBRM of
size N ¼ 2n, 8 � n � 13. Average is performed over 8192
eigenvectors (namely 2n�3 eigenvectors with eigenvalues
around the band center, and 216�n realizations of the ran-
dommatrices). The number variance (3) is calculated on the
unfolded spectrum with mean level spacing � ¼ 1 by
taking the average over windows of length L ¼ 2k�, 1 �
k � 32, centered at integer positions of the energy
E ¼ �32 to E ¼ 32, and over r realizations of the random
matrices (from r ¼ 32 000 for N ¼ 256 to r ¼ 500 for
n ¼ 2048). The level compressibility�ðNÞ is then extracted
from a quadratic fit �ð2ÞðLÞ ¼ aþ �ðNÞLþ cL2 in the
rangeL 2 ½10; 32�. The large-N asymptotics for� is finally
obtained by a linear fit of�ðNÞ as a function of 1=N over the
range 28 � N � 211.

The results for Hermitian matrices (� ¼ 2) are pre-
sented in Fig. 1. The agreement between � and 1�D1 is
quite good for all b. We obtain similar results for the real
symmetric case � ¼ 1 (data not shown), which indicates
that indeed (4) holds for PLBRM matrices.

Ruijsenaars-Schneider ensemble.—Our second example
of CrRME is the Ruijsenaars-Schneider ensemble (RSE)
proposed in [9]. This ensemble consists of unitary matrices
related to the Lax matrix of the Ruijsenaars-Schneider
classical N-body integrable model. Matrices of this en-
semble have the form

Mmn ¼ ei�m
1� e2�ia

Nð1� e2�iðm�nþaÞ=NÞ ; (8)

1 � m, n � n. Here�m are independent random variables
(phases) uniformly distributed between 0 and 2�, a is a
free parameter independent on N. The advantage of this
model is that all spectral correlation functions, in particu-
lar, the spectral compressibility �, can be calculated

analytically for N ! 1 [9,10]. When 0< a< 1, �ðaÞ ¼
ð1� aÞ2 [10]. The general expression for � ¼ �ðaÞ is
tedious and will not be presented here. We only mention
that in the vicinity of an integer k

�ðaÞ �
a!k

ða� kÞ2
k2

: (9)

In order to obtain analytical expressions for D1, we
construct the perturbation series around all integer points
a ¼ k. Let a ¼ kþ " and expand the matrix elements (8)
into series of ". One gets

Mmn¼Mð0Þ
mn

�
1þ�iðN�1Þ

N
"

�
þ"Mð1Þ

mnþOð"2Þ; (10)

where Mð0Þ
mn ¼ ei�m�n;mþk, and

Mð1Þ
mn¼ei�mð1��n;mþkÞ �e��iðm�nþkÞ=N

N sinð�ðm�nþkÞ=NÞ (11)

(here �n;mþk ¼ 1 when n � mþ k mod N and 0 other-

wise). In the case k ¼ 0 (i.e., jaj � 1), Mð0Þ
mn is diagonal:

the unperturbed eigenfunctions are localized, and the per-
turbation decays as in (1). The first order of the perturba-
tion series can be obtained by calculation of contributions
from 2� 2 submatrices [2,4,8], and one can check that in
this case (6) is valid (see [10] for details).
For other values of k, eigenfunctions of the unperturbed

matrix Mð0Þ
mn are extended and the perturbation series cor-

responds to weak multifractality. Perturbation series in this
regime have been constructed for critical PLBRM by using
the supermatrix � model [2,8]. For RSE, the form (10) of
the matrix enables us to use standard perturbation series
formulas. Let us consider the case k ¼ 1. Eigenvalues

�ð0Þð�Þ and eigenfunctions �ð0Þ
n ð�Þ of the unperturbed

matrix are given by
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FIG. 1 (color online). � (black circles) and 1�D1 (red error
bars) for PLBRM Hermitian ensemble (� ¼ 2). Lines: asymp-
totic theoretical values � ¼ 1=ð4�bÞ for b � 1 (solid) and � ¼
1� �

ffiffiffi
2

p
b� 4ð2= ffiffiffi

3
p � 1Þ�2b2 for b � 1 (dashed) (b2 term is

taken from [7] and corrected for a misprint [20]). Circles for
� are larger than error bars. Inset: same data zoomed in.
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�ð0Þð�Þ¼ei
��þ2�i�=N; �ð0Þ

n ð�Þ¼ 1ffiffiffiffi
N

p eiSnð�Þ; (12)

where �� ¼ P
N
j¼1 �j=N and

Snð�Þ ¼ 2�

N
�ðn� 1Þ � Xn�1

j¼1

ð�j � ��Þ: (13)

The expansion of the exact eigenfunctions into a series of
unperturbed eigenfunctions has the form

�nð�Þ ¼ �ð0Þ
n ð�Þ þ XN

�¼1

C���
ð0Þ
n ð�Þ: (14)

At first order in " ¼ a� 1,

C�� ¼ "

P
mn
�ð0Þ	

m ð�ÞMð1Þ
mn�

ð0Þ
n ð�Þ

�ð0Þð�Þ � �ð0Þð�Þ : (15)

Expansion at leading order in " yields

�XN
n¼1

j�nð�Þj2q
�
¼ N1�q

�
1þ qðq� 1Þ

2
Wð�Þ

�
; (16)

where

Wð�Þ ¼ 1

N

XN
n¼1

��XN
�¼1

eiSnð�Þ�iSnð�ÞC�� þ c:c:

�
2
�
: (17)

Using the explicit expressions (12) and (13) one finds that
the exact second order contribution to Wð�Þ is

Wð�Þ¼"2
�2

N3

XN�1

�¼1

XN�1

n¼1

sin2ð��n=NÞ
sin2ð�n=NÞsin2ð��=NÞ : (18)

We are interested in its behavior for N ! 1. The only
diverging terms correspond to two regions. The first
is � � N with n=N of the order of 1 and the second is
n � N and �=N � 1. In this approximation

Wð�Þ �
N!1

2"2

N

XN�1

n¼1

gðn=NÞ
sin2ð�n=NÞ ; (19)

where

gðn=NÞ ¼ X1
�¼1

sin2ð��n=NÞ
�2

¼ �2

2
yð1� yÞ (20)

with y ¼ n=N and 0< y< 1. The remaining sum over n
can be transformed into an integral over variable y and
finally we obtain

Wð�Þ �
N!12"

2 lnN þOð1Þ: (21)

From (16) and (2) it follows that in the leading order of
perturbation series in " ¼ 1� a one has

Dq ¼ 1� qð1� aÞ2: (22)

For k 
 2 calculations are more tedious but one can show
[10] that when ja� kj � 1

Dq ¼ 1� q
ða� kÞ2

k2
: (23)

Comparing with (9) we conclude that the leading terms of
perturbation series in RSE indeed verify (6) around all
integer values of a. In Fig. 2 we show that � ¼ 1�D1

is fulfilled for other values of a as well, with good preci-
sion. Avariant of RSE has been investigated in [11] and the
same relation (4) has been observed to hold within numeri-
cal precision. Note that the perturbation series approach
used here for weak multifractality can be applied to other
problems as well [10].
Critical ultrametric ensemble.—As a third example we

consider the ensemble of critical ultrametric random ma-
trices proposed in [12]. This ensemble consists of 2K � 2K

Hermitian matrices whose matrix elements are indepen-
dent Gaussian random variables with zero mean. All di-
agonal elements have the same variance hjHnnj2i ¼ W2.
The variances of off-diagonal elements are hjHmnj2i ¼
22�dmnJ2, where dmn is the ultrametric distance between
m and n on the binary tree with K levels and the root at 1.
The parameter in this model is the ratio J=W. The first term
of perturbation series in J=W for fractal dimensions has
been calculated in [12] as

Dq ¼ J

W

ffiffiffiffi
�

p
�ðq� 1=2Þffiffiffi
2

p
ln2�ðqÞ : (24)

The calculation of the spectral compressibility can be
performed similarly as above [10] and one finds

� ¼ 1� �Jffiffiffi
2

p
ln2W

: (25)

Thus the relation � ¼ 1�D1 is fulfilled for the critical
ultrametric ensemble at first order in J=W. For other J=W,
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FIG. 2 (color online). � (solid line) and 1�D1 (red circles)
for RSE. D1 is obtained numerically by averaging over all
eigenvectors taken from 128 realizations for N ¼ 28 till 8 for
N ¼ 212. For � we use the theoretical value obtained in [10].
Dashed line: perturbative regime (9). Inset: zoom for 1 � a � 3.
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we have calculated D1 and � numerically. The results
shown in Fig. 3 confirm that the relation (4) is valid with
a good accuracy for all values of J=W.

Higher-dimensional models.—The above discussion
was restricted to one-dimensional systems. Let us now
turn to two examples of higher-dimensional systems where
numerical data are available in the literature.

The standard two-dimensional critical model is the
metal-insulator transition in the quantum Hall effect, mod-
eled by the Chalker-Coddington network [13]. We get the
information dimension D1 from [14], where multifractal
dimensions for this model have been carefully fitted.
Assuming that errors in the coefficients of the fit are inde-
pendent we obtain that D1 ¼ 1:7405� 0:0004. According
to our conjecture, the compressibility should be �c ¼ 1�
D1=2, which gives �c ¼ 0:1298� 0:0002. This agrees
with the estimate in [15] where for this model the value
� ¼ 0:124� 0:006 was obtained numerically. Notice that
errors are underestimated as they mostly take into account
statistical errors.

The metal-insulator transition in three-dimensional
Anderson model is the most important example of critical
systems. In [16] it was reported that D1 ¼ 1:93� 0:01.
Assuming that the symmetry for the multifractal spectrum
conjectured in [17] holds, then the estimate D0

0 ¼ 4:027�
0:016 given in [18] yields D1 ¼ 2d�D0

0 ¼ 1:973�
0:016. According to our conjecture (4) one should have
�c ¼ 1�D1=3, which gives �c � 0:34 to 0.36. The spec-
tral compressibility for the anisotropic Anderson model at
the metal-insulator transition has been reported in [19]. In
this Letter it was concluded that � ¼ 0:28� 0:06 but this
value corresponds to the average over different fits which
have big fluctuations. In the same Letter, when a smaller
length has been used to define the number variance it was
found that � fluctuates much less and gives � ¼ 0:32�
0:03, which agrees with �c � 0:35 obtained from our
conjecture. It would be of interest to get D1 and � with
higher precision for these models.

Conclusion.—In this Letter we present analytical and
numerical evidences in favor of the conjecture that for a
large class of CrRME the wavefunction entropy and the
level compressibility are simply related by �þD1=d ¼ 1.
We consider three different models: the standard critical
PLBRM [1], the ensemble of random matrices related with
Lax matrices of the Ruijsenaars-Schneider integrable
model [9], and the critical ultrametric ensemble [12]. For
all these models we check the conjecture in perturbation
series and by direct numerical calculations. Though we
cannot rigorously prove our relation, these investigations
show that with good numerical precision it is fulfilled for
very different systems. This suggests the existence of an
universal structure in CrRME.
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FIG. 3 (color online). Same as Fig. 1 for ultrametric matrices.
Solid line is the asymptotic theoretical value (25). Dashed
horizontal line is the numerical value 1�D1 ’ 0:137� 0:008
obtained forW ¼ 0 (J=W ! 1). Same method as in Fig. 1 (here
D1 is obtained from matrices of size up to 212 only). Inset: same
data magnified around J=W ¼ 0:5.
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