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The radiative capture cross sections for the 3Heð�;�Þ7Be and 3Hð�; �Þ7Li reactions are calculated in

the fully microscopic fermionic molecular dynamics approach using a realistic effective interaction that

reproduces the nucleon-nucleon scattering data. At large distances bound and scattering states are

described by antisymmetrized products of 4He and 3He=3H ground states. At short distances the many-

body Hilbert space is extended with additional many-body wave functions needed to represent polarized

clusters and shell-model-like configurations. Properties of the bound states are described well, as are the

scattering phase shifts. The calculated S factor for the 3Heð�;�Þ7Be reaction agrees very well with recent

experimental data in both absolute normalization and energy dependence. In the case of the 3Hð�;�Þ7Li
reaction the calculated S factor is larger than available experimental data by about 15%.
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The 3Heð�;�Þ7Be reaction is one of the key reactions in
the solar proton-proton chains [1,2]. It competes with the
3Heð3He; 2pÞ4He reaction and therefore determines the
production of 7Be and 8B neutrinos in the ppII and ppIII
branches. For a long time the experimental situation re-
garding the capture cross section was not clear due to
conflicting experimental results [1]. In recent years the
capture cross section has been remeasured at the
Weizmann Institute [3], by the LUNA Collaboration
[4,5], by the Seattle group [6], and by the ERNA
Collaboration [7] now providing consistent high precision
data. Nevertheless, it is still not possible to reach the low
energies relevant in solar burning, and the data have to be
extrapolated with the help of models. A careful analysis of
the new data sets and a discussion of the extrapolation and
its uncertainties is given in Ref. [2].

The first attempts to model the capture cross sections
were done by using an external capture model [8,9] where
only the asymptotic form of the bound and scattering state
wave functions enters, neglecting the behavior of the wave
function at short distances. In potential models like, e.g.,
Ref. [10] the wave functions are described by two pointlike
clusters interacting via an effective nucleus-nucleus poten-
tial, which is adjusted to give reasonable properties for the
bound states and the scattering phase shifts. In the frame-
work of the microscopic cluster model, e.g., Refs. [11–14],
the system is described by antisymmetrized wave functions
of two clusters. One has to solve for the relative motion of
the clusters by using resonating group or generator coor-
dinate methods. In these microscopic models phenomeno-
logical nucleon-nucleon interactions are used. Like in the
potential models, these interactions are tuned to reproduce
certain properties of bound and scattering states within the
restricted cluster model space. There have been attempts
[13,15] to go beyond the single-channel approximation by
including the 6Liþ p channel, but such enlarged model

spaces require again modifications of the phenomenologi-
cal interaction.
Predictive power is expected from ab initio methods

which use realistic interactions that reproduce the
nucleon-nucleon scattering data and the deuteron proper-
ties. Solving the many-body problem with realistic inter-
actions is hard, as very large model spaces are required and
up to now consistent ab initio reaction calculations have
been possible only for single nucleon projectiles [16,17].
The 3Heð�;�Þ7Be reaction was studied in hybrid ap-
proaches, where asymptotic normalization coefficients cal-
culated from 7Be bound state wave functions using
variational Monte Carlo [18] and the no-core shell model
[19] were combined with conventional potential models.
None of these calculations is successful in describing both
the normalization and the energy dependence of the cap-
ture cross section data.
In this Letter, we present the first ab initio type calcu-

lation of the 3Heð�; �Þ7Be and 3Hð�; �Þ7Li capture cross
sections. We describe consistently bound and scattering
states starting from a realistic effective interaction derived
in the unitary correlation operator method. The fermionic
molecular dynamics approach is used to create many-body
wave functions that capture the relevant physics in the
interaction region. Frozen cluster configurations with 4He
and 3He=3H ground states are used at large distances.
The effective interaction is derived from the realistic

Argonne V18 interaction [20] that reproduces the deuteron
properties and the nucleon-nucleon scattering phase shifts.
The interaction is transformed into a phase-shift equivalent
low-momentum interaction by using the unitary correla-
tion operator method (UCOM) [21,22] where short-range
central and tensor correlations are incorporated explicitly.
In this work we use UCOM correlation functions that are
derived from a Hamiltonian evolved with the similarity
renormalization group (SRG) as described in Ref. [22]

PRL 106, 042502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 JANUARY 2011

0031-9007=11=106(4)=042502(4) 042502-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.042502


with a flow parameter � ¼ 0:20 fm4, corresponding to a
soft cutoff � ¼ 1:5 fm�1. As shown in Ref. [22], no-core
shell-model calculations using the two-body UCOM(SRG)
interaction are able to reproduce the binding energies of
triton, 4He, and 7Li.

Fermionic molecular dynamics (FMD) is a microscopic
many-body approach that has been used successfully for
nuclear structure studies of nuclei in the p and sd shells.
See [23–25] for some recent applications and [26] for a
general discussion. FMD is based on intrinsic many-body
basis states that are Slater determinants

jQi ¼ Afjq1i � � � � � jqAig; (1)

with Gaussian wave packets as single-particle states:

hxjqki ¼ exp

�
�ðx� bkÞ2

2ak

�
� j�"

k; �
#
ki � j�ki: (2)

The complex parameters bk encode the mean positions and
momenta of the wave packets. The width parameters ak are
variational and can be different for each nucleon. The spin
can assume any direction, and isospin �k is �1=2. The
wave packet basis is very flexible and contains harmonic
oscillator shell-model and Brink-type cluster states as spe-
cial cases.

To restore the symmetries of the Hamiltonian, the in-
trinsic basis states jQi are projected on parity, angular
momentum, and total linear momentum:

jQ; J�MKi � jPcm ¼ 0i ¼ PJ
MKP

�PP¼0jQi; (3)

so that the wave function factorizes into the internal part
and the center-of-mass motion given by a plane wave.

In general, the intrinsic states have no axial symmetry
and K is not a good quantum number. Linear-dependent
combinations among the different K projections have to be
removed. This is done numerically and introduces a small
ambiguity in the size of the model space. We will exploit
this ambiguity later to fine-tune the 7Be and 7Li binding
energies.

All bound and scattering states are represented by using

a set of intrinsic states jQðiÞi:
j�; J�M�i ¼ X

iK

jQðiÞ; J�MKiCJ��
iK : (4)

Proper boundary conditions for bound and scattering states
are imposed by using the microscopic R-matrix approach
developed by the Brussels group [27,28].

At large distances the 7Be and 7Li wave functions con-
sist of 4He and 3He=3H clusters in their ground states
interacting via the Coulomb interaction only. The relative
motion of these frozen clusters is therefore given by
Whittaker and Coulomb functions for bound and scattering
states, respectively. Microscopically, we describe these
cluster configurations with FMD Slater determinants
where the clusters are put at a distance R. The wave
functions of the individual clusters are obtained by varia-
tion in the FMD model space.

In the interaction region the nuclear interaction will
polarize the clusters. To include these polarization effects
we extend themodel spacewith additional FMDbasis states
obtained by variation after projection (VAP) on spin parity
3=2�, 1=2�, 7=2�, and 5=2� as well as on 1=2þ, 3=2þ, and
5=2þ. The square radius of the intrinsic state is used as a
constraint to generate configurations corresponding to clus-
ter distances from 1 to 5 fm. Together with the frozen
configurations that extend to distances slightly beyond the
channel radius a ¼ 12 fm, we have about 50 intrinsic basis
states to represent the inner part of the wave function.
Density distributions of typical frozen and polarized basis
states are shown in Fig. 1.
When the model space is restricted to frozen configura-

tions, the 3=2� and 1=2� states in 7Be are bound only by
240 and 10 keV, respectively. The FMD VAP configura-
tions are therefore essential to get a good description of the
bound states. As mentioned, the numerical elimination of
linear dependent states in the K-mixing procedure intro-
duces a small ambiguity in the model space size that
translates into an ambiguity in the binding energy of about
150 keV. As the reaction cross section depends very sensi-
tively on phase space, we exploit this ambiguity to tune the
centroid of the 3=2� and 1=2� bound state energies to
the experimental value. The calculated splitting between
the bound states is too small compared to the data.
However, the total cross section essentially depends only
on the centroid energy, whereas the branching ratio slightly
changes with the splitting. The bound state properties for
7Be and 7Li are summarized in Table I. The charge radii

FIG. 1 (color online). Cuts through the density distributions of
intrinsic basis states. Left: Selected polarized configurations
obtained in variation after angular momentum and parity
projection for 3=2�, 7=2�, and 1=2� states. Right: Frozen
configurations where only the cluster distance is varied.

TABLE I. Calculated and experimental bound state properties.
Energies with respect to the 4He-3He and 4He-3H thresholds,
respectively. Experimental charge radii are from Refs. [29,30]
and the 7Li quadrupole moment from Ref. [31].

7Be 7Li
FMD Exp FMD Exp

E3=2� [MeV] �1:49 �1:586 �2:39 �2:467
E1=2� [MeV] �1:31 �1:157 �2:17 �1:989
rch [fm] 2.67 2.647(17) 2.46 2.390(30)

Q [e fm2] �6:83 �3:91 �4:00ð3Þ
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and quadrupole moments test the tail of the wave functions
and agree reasonably well with experiment.

In Fig. 2, we show the phase shifts for scattering in the
S- and D-wave channels. As for the bound states, the
addition of polarized configurations to the model space
significantly changes the results and leads to a good agree-
ment with the available data [32,33].

The capture cross section for the 3Heð�;�Þ7Be reaction
is calculated by using the many-body scattering and bound
eigenstates of the Hamiltonian. In the energy range up to
2.5 MeV, it has been shown [18] that only dipole transitions
from the S- and D-wave scattering states have to be con-
sidered. The obtained S factor is shown in Fig. 3 together
with the experimental data. Our results are in good agree-
ment with the recent measurements regarding both the
absolute normalization and the energy dependence. The
extrapolated zero-energy S factor is S34ð0Þ ¼ 0:593 keVb.

As our model successfully describes the 3Heð�;�Þ7Be
reaction, it should also do well for the isospin mirror
reaction 3Hð�; �Þ7Li. As shown in Fig. 4, we observe a
good agreement for the energy dependence of the S factor
but find that the absolute normalization is about 15% larger
than the data by Brune, Kavanagh, and Rolfs [34].
In summary, our calculations are able to describe con-

sistently the bound state properties and the scattering phase
shifts as well as the normalization and energy dependence
of the 3Heð�; �Þ7Be capture cross section. Our results
deviate from the correlation between the ground state
quadrupole moment and zero-energy S factor found in
cluster models using phenomenological interactions
[14,15]. Our approach differs in two main aspects from
those earlier studies. First, we use a well defined effective
interaction that describes the nucleon-nucleon scattering
data. In contrast to phenomenological effective interac-
tions, the UCOM interaction has a pronounced momentum
dependence and a longer range due to the explicitly in-
cluded pion exchange, a feature that turns out to be im-
portant for the low energy scattering solutions. Second, our
model space is larger than in the cluster model. Additional
FMD basis states in the interaction region describe polar-
ized clusters and shell-model-like configurations.
Although they are only a small admixture in the full
wave functions, they are essential to describe the bound
state properties as well as the scattering phase shifts.
The results can also be studied in terms of overlap

functions that are obtained by mapping the microscopic
many-body wave functions onto the relative wave function
of two pointlike nuclei in the resonating group formalism.
In Fig. 5, we show the overlap functions for the 1=2þ
scattering state at Ecm ¼ 50 keV and the 3=2� bound state.
The nodes in the overlap functions reflect the antisymmet-
rization between the clusters. We also show the dipole
strength calculated with these overlap functions. It repro-
duces the dipole matrix element calculated with the micro-
scopic wave functions within 2%. Comparing with the
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FIG. 3 (color online). The astrophysical S factor for the
3Heð�;�Þ7Be reaction. The FMD result is given by the solid
line. Recent experimental data [3–7] are shown as dark colored
symbols and older data [1] as light symbols.
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FIG. 2 (color online). 4He-3He scattering phase shifts. Dashed
lines show results using only frozen configurations; solid lines
are obtained with the full FMD model space. The calculated
D-wave phase shifts lie on top of each other. Experimental
results are from Refs. [32,33].
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FIG. 4 (color online). The astrophysical S factor for the
3Hð�; �Þ7Li reaction. The FMD result is given by the solid
line. Most recent experimental data are shown as dark symbols
and older data as light symbols ([34] and references therein).
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dipole strength obtained from the Coulomb and Whittaker
functions matched at the channel radius, we observe siz-
able differences up to distances of about 9 fm. This in-
dicates that the assumption of predominant external
capture at low energies is not that well satisfied.

Future calculations should investigate the role of three-
body forces. It is expected that low-momentum three-body
forces would increase the splitting between the 3=2� and
1=2� states but would have a minor effect on the centroid
energy. Furthermore, more detailed wave functions could be
used. In the FMD approach it is difficult to describe long-
range tensor correlations explicitly, so that the absolute
binding energies are underestimated, although the binding
energy with respect to the cluster threshold is in very good
agreement with no-core shell model results. Nevertheless,
we expect that such improvements will not change the
capture cross sections significantly as important properties
like phase shifts of the scattering states, binding energy with
respect to the cluster threshold, asymptotic behavior of the
bound state wave functions as tested by charge radius and
quadrupole moment, and proper treatment of antisymmetri-
zation are already well described in the present calculation.
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FIG. 5 (color online). On the left: 7Be overlap functions for a
low energy 1=2þ scattering state and the 3=2� bound state (solid
lines). Coulomb and Whittaker functions matched at the channel
radius (dashed lines). On the right: Dipole strength calculated
with overlap functions (solid line) and with Coulomb and
Whittaker functions (dashed line).
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