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We present results for the elliptic and triangular flow coefficients v2 and v3 in Auþ Au collisions atffiffiffi
s

p ¼ 200 AGeV using event-by-event D ¼ 3þ 1 viscous hydrodynamic simulations. We study the effect

of initial state fluctuations and finite viscosities on the flow coefficients v2 and v3 as functions of

transverse momentum and pseudorapidity. Fluctuations are essential to reproduce the measured centrality

dependence of elliptic flow. We argue that simultaneous measurements of v2 and v3 can determine �=s

more precisely.
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Fluctuating initial conditions for hydrodynamic simula-
tions of heavy-ion collisions have been argued to be very
important for the exact determination of collective flow
observables and to describe specific features of multipar-
ticle correlation measurements in heavy-ion collisions at
Brookhaven National Laboratory’s Relativistic Heavy-Ion
Collider (RHIC) [1–17]. Long-range correlations in pseu-
dorapidity and double-peak structures on the awayside in
��p ��� correlations have been reproduced using initial

states with fluctuations in the transverse plane, extending
as flux tubes along the beam line [11–13,16].

In this work we report on results for both elliptic and
triangular flow obtained with an event-by-eventD ¼ 3þ 1
relativistic hydrodynamic simulation, an extension of
MUSIC [18], including shear viscosity. We first briefly

describe the inclusion of viscosity and leave a more de-
tailed description to a forthcoming work.

In the first-order formalism for viscous hydrodynamics,
the stress-energy tensor is decomposed into

T��
1st ¼ T��

id þ S��; (1)

where

T
��
id ¼ ð�þ P Þu�u� � Pg�� (2)

is the ideal fluid part with flow velocity u�, local energy
density � and local pressureP . The flow velocity is defined
as the timelike eigenvector of T

��
id , T

��
id u� ¼ �u�, with

the normalization u�u� ¼ 1 and the pressure is determined
by the equation of state as a function of �.

The viscous part of the stress-energy tensor in the first-
order approach is given by

S�� ¼ �

�
r�u� þr�u� � 2

3
���r�u

�

�
(3)

where ��� ¼ g�� � u�u� is the local 3-metric and r� ¼
���@� is the local space derivative. Note that S�� is
transverse with respect to the flow velocity since ���u� ¼
0 and u�u� ¼ 1. Hence, u� is also an eigenvector of the
whole stress-energy tensor with the same eigenvalue �.

This form of viscous hydrodynamics is conceptually
simple. However, this Navier-Stokes form is known to
introduce unphysical superluminal signals. There are sev-
eral remedies for this problem [19–23], all of them em-
ploying the second order formalism. In this work, we use a
variant of the Israel-Stewart formalism derived in [24],
where the stress-energy tensor is decomposed as

T �� ¼ T��
id þW��: (4)

The evolution equations are @�T �� ¼ 0 and

�
�
���

�u
�@�W

�� ¼ � 1

	

ðW�� � S��Þ � 4

3
W��ð@�u�Þ:

(5)

In the 	, �s coordinate system we use, these equations
can be rewritten as hyperbolic equations with sources

@aT
ab
id ¼ �@aW

ab þ Fb (6)

and

@aðuaWcdÞ ¼ �ð1=	
ÞðWcd � ScdÞ þGcd (7)

where Fb and Gcd contain terms introduced by the coor-
dinate change from t, z to 	, �s as well as those introduced
by the projections in Eq. (5).
Our approach to solve these hyperbolic equations relies

on the Kurganov-Tadmor scheme [25,26]. See [18] for
details. As opposed to the ideal case described in [18],
we now face time derivatives in the source term. These
are handled with the first-order approximation _gð	nÞ ¼
ðgð	nÞ � gð	n�1ÞÞ=�	 in the first step of the Heun method,
and in the second step we use _gð	nÞ ¼ ðg�ð	nþ1Þ �
gð	nÞÞ=�	 where g�ð	nþ1Þ is the result from the first step.
As most Eulerian algorithms, ours suffers from numeri-

cal instability when the density becomes small while the
flow velocity becomes large. Fortunately this happens late
in the evolution of the system. Regularizing such instabil-
ity has no strong effects on the observables we are inter-
ested in. Some ways of handling this are known (see,
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e.g., Ref. [27]). Setting the local viscosity to zero when
finite viscosity causes negative pressure in the cell as
advocated in [27] and reducing the ideal part by 5% works
well to stabilize the calculations without introducing
spurious effects.

While in standard hydrodynamic simulations with aver-
aged initial conditions all odd flow coefficients vanish by
definition, fluctuations generate triangular flow v3 as a
response to the finite initial triangularity. We follow [17]
and define an event plane through the angle

c n ¼ 1

n
arctan

hpT sinðn�Þi
hpT cosðn�Þi ; (8)

where the weight pT is chosen for best accuracy [28].
Then, the flow coefficients can be computed using

vn ¼ hcos½nð�� c nÞ�i: (9)

The initialization of the energy density is done using a
Glauber Monte Carlo model (see [29]): Before the colli-
sion the density distribution of the two nuclei is described
by a Woods-Saxon parametrization, which we sample to
determine the positions of individual nucleons. The impact
parameter is sampled from the distribution PðbÞdb ¼
2bdb=ðb2max � b2minÞ, where bmin and bmax depend on the

given centrality class. Two nucleons are assumed to collide

if their relative transverse distance is less than D ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�NN=


p
, where �NN is the inelastic nucleon-nucleon

cross section, which at top RHIC energy of
ffiffiffi
s

p ¼
200 AGeV is �NN ¼ 42 mb. The energy density is distrib-
uted proportionally to the wounded nucleon distribution.
For every wounded nucleon we add a contribution to the
energy density with Gaussian shape (in x and y) and width
�0 ¼ 0:4 fm. Using �0 ¼ 0:8 fm reduces both v2 and v3

on average by �8% and produces steeper transverse mo-
mentum spectra for pT > 2 GeV (also see [15]). We will
study a finite contribution from binary collision scaling,
which can increase the average initial eccentricity, in a
future work. In the rapidity direction, we assume the
energy density to be constant on a central plateau and
fall like half-Gaussians at large j�sj (see [18]). This pro-
cedure generates flux-tube-like structures compatible with
measured long-range rapidity correlations [30–32]. The
absolute normalization is determined by demanding that

the obtained total multiplicity distribution reproduces the
experimental data. We will present a more detailed study
of particle spectra and dependencies on different parame-
ters in a forthcoming work. See [18] for details on parame-
ter sets and obtained particle spectra in the ideal case
with average initial conditions. As equation of state we
employ the parametrization ‘‘s95p-v1’’ from [33], ob-
tained from interpolating between lattice data and a
hadron resonance gas.
In Fig. 1 we show the energy density distribution in

the transverse plane for an event with impact parameter
b ¼ 2:4 fm at the initial time 	0 ¼ 0:4 fm=c and at time
	 ¼ 6 fm=c for �=s ¼ 0 and �=s ¼ 0:16. This clearly
shows the effect of dissipation.
We perform a Cooper-Frye freeze-out using

E
dN

d3p
¼ dN

dypTdpTd�p

¼ gi
Z
�
fðu�p�Þp�d3��; (10)

where gi is the degeneracy of particle species i, and � the
freeze-out hypersurface. In the ideal case the distribution
function is given by

fðu�p�Þ¼f0ðu�p�Þ¼ 1

ð2
Þ3
1

exp½ðu�p���iÞ=TFO��1
;

(11)

where�i is the chemical potential for particle species i and
TFO is the freeze-out temperature. In the finite viscosity
case we include viscous corrections to the distribution
function, f ¼ f0 þ �f, with

�f ¼ f0ð1� f0Þp�p�W��

1

2ð�þ P ÞT2
; (12)

where W is the viscous correction introduced in Eq. (4).
Note that the choice �f� p2 is not unique [34]. We use
fixed freeze-out energy densities of 0:12 GeV=fm3 and
0:16 GeV=fm3, corresponding to TFO ¼ 136 MeV and
142 MeV for ideal and viscous calculations, respectively.
The algorithm used to determine the freeze-out surface

� [18] is very efficient in determining the freeze-out

τ=0.4 fm/c
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FIG. 1 (color online). Energy density distribution in the trans-
verse plane for one event with b ¼ 2:4 fm at the initial time
(left), and after 	 ¼ 6 fm=c for the ideal case (middle) and with
�=s ¼ 0:16 (right).
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FIG. 2 (color online). Freeze-out surfaces for two different
events (red [dark gray] and yellow [medium gray]) compared
to that for the averaged initial condition (light gray).
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surface of a system with fluctuating initial conditions. We
demonstrate this in Fig. 2, where we show freeze-out
surface in the x-	 plane in the vicinity of y ¼ 0 fm and
�s ¼ 0 for two different initial distributions compared
to that for an averaged initial condition. The arrows are
projections of the normal vector on the hypersurface
element onto the x-	 plane.

We include resonances up to the�meson. The pseudor-
apidity dependence of both v2 and v3 is affected notably by
the inclusion of resonance decays, improving the agree-
ment of v2ð�pÞ with data significantly. v2ðpTÞ at midra-

pidity is almost unaffected by the resonances while v3ðpTÞ
is reduced by approximately 20%–30%. Flow observables
have been shown to depend mainly on these lower reso-
nances [35,36] such that it is a good approximation to
omit contributions from resonances above the � meson.
Average pT in most central collisions are approximately
0.53 GeV for all studied viscosities.

Figure 3 shows the elliptic flow v2 for charged hadrons
as a function of transverse momentum obtained from an
averaged initial condition in the ideal case and for an aver-
age over 100 individual events for �=s 2 f0; 0:08; 0:16g.
We compare to data from STAR [37] and PHENIX [38].

Shaded bands indicate statistical errors. While in the
most central collisions fluctuations increase v2 compared
to the case with averaged initial conditions, for 10%–20%
central collisions the difference is negligible and for 30%–
40% central collisions fluctuations reduce the elliptic flow.
The increase for central collisions is easy to understand.

Single events have a larger anisotropy with respect to the
event plane than the average with respect to the reaction
plane, hence increasing the obtained v2. This effect de-
creases with increasing centrality eventually making the
event-by-event v2 smaller compared to the averaged initial
condition case. This can be understood by the fact that
for more peripheral collisions, individual hot spots with a
more isotropic shape influence the expansion. Given these
effects, we conclude that evolving single events and aver-
aging the final result has a clear effect on the centrality
dependence of v2.
Viscosity reduces the elliptic flow for all centralities as

also found in (2þ 1)-dimensional simulations [39–42].
Triangular flow v3 as a function of pT is shown in Fig. 4.

v3 depends less strongly on the centrality than v2 since it is
completely fluctuation driven. It is largest for an ideal
fluid and reduces similarly to v2 with increasing viscosity
of the medium.
The upper panel of Fig. 5 shows the pseudorapidity

dependence of v2 for 15%–25% central collisions com-
pared to PHOBOS data [43]. A reduction of elliptic flow
with increasing viscosity is visible, particularly for large
pseudorapidities j�pj, which has been anticipated [18,44].

The results indicate that �=s grows towards large j�pj,
which is expected because of the less dense system in that
region. However, there could be other reasons for the
disagreement, such as longitudinal fluctuations or modified
decoupling at higher rapidities. Hadronic rescattering
within a hadron cascade model can also improve the agree-
ment with experimental data [45]. In the lower panel of
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FIG. 3 (color online). Charged hadron v2 for different central-
ities as a function of pT for averaged initial conditions (avg) and
event-by-event simulations (e-b-e) using different �=s compared
to STAR [37] and PHENIX [38] data.

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5  3
pT [GeV]

30-40% central
 0

 5

 10

 15

 20
10-20% central

h+
/-
 v

3 
[%

]

 0

 5

 10

 15

 20

 25
0-5% centralideal, e-b-e

η/s=0.08, e-b-e
η/s=0.16, e-b-e

FIG. 4 (color online). Charged hadron v3 for different central-
ities as a function of pT for event-by-event simulations using
different viscosity to entropy density ratios.
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Fig. 5 we present the �p dependence of v3. Again, the

decrease of v3 with increasing viscosity is visible, being
strongest for large j�pj.

We presented the elliptic and triangular flow coefficients
obtained with an event-by-event analysis using (3þ 1)-
dimensional relativistic viscous hydrodynamics. Charged
hadron elliptic flow around midrapidity is well described
for a wide range of centralities when using�=s ¼ 0:08, the
conjectured lower bound from anti-de Sitter/conformal
field theory correspondence [46]. A similarly small value
was found in a parton cascade model based on perturbative
QCD [47]. Larger viscosities underestimate elliptic flow.
Shear viscosity reduces v2 especially for larger pseudor-
apidities; however, the data cannot be described for all �p

when using constant �=s. Triangular flow has a weaker
dependence on centrality. We determined its pT and �p

dependence and its dependence on �=s. When v3 data
becomes available, combined analyses of both v2 and v3

can make an accurate determination of the shear viscosity
possible.
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FIG. 5 (color online). Charged hadron v2 and v3 as a function
of pseudorapidity for event-by-event simulations using different
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