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QCD vacuum is a superposition of degenerate states with different topological numbers that are

connected by tunneling (the � vacuum). The tunneling events are due to configurations of gauge fields

(e.g., the instantons) that induce local P -odd domains in Minkowski space-time. We study the quark

fragmentation in this topologically nontrivial QCD background. We find that even though QCD globally

conserves P and CP symmetries, two new kinds of P -odd fragmentation functions emerge. We study

their experimental manifestations in dihadron production in eþe� collisions, and find two interesting

dihadron correlations: the cosð�1 þ�2Þ correlation usually referred to as the Collins effect, and a P -odd

� sinð�1 þ�2Þ correlation that vanishes in the cross section summed over many events, but survives on

the event-by-event basis.
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1. Introduction.—QCD is at present firmly established as
the theory of the strong interactions. Equations of motion
in QCD possess topologically nontrivial solutions [1] sig-
naling the presence of degenerate ground states differing
by the value of topological charge [2]. The physical vac-
uum state of the theory is a superposition of these degen-
erate states, the so-called � vacuum [3]. To reflect this
vacuum structure, one may equivalently introduce a �
term in the QCD Lagrangian. Unless � is identically
equal to zero, this term explicitly breaks P and CP sym-
metries of QCD. However, stringent limits on the value of
� < 3� 10�10 deduced from the experimental bounds on
the electric dipole moment of the neutron [4] indicate the
absence of global P and CP violation in QCD.

Nevertheless it has been proposed that the local P - and
CP -odd effects due to the topological fluctuations charac-
terized by an effective � ¼ �ð ~x; tÞ varying in space and
time could be directly observed through multiparticle cor-
relations [5]. In heavy ion collisions, the existence of
magnetic field (or the angular momentum) in the presence
of topological fluctuations can induce the separation of
electric charge with respect to the reaction plane, so-called
chiral magnetic effect [6–9]. There is recent experimental
evidence for this effect from the STAR Collaboration at
RHIC [10]. The interpretation of the STAR result in terms
of the local parity violation is under intense scrutiny at
present, see e.g., [11].

In this Letter, we study the role of QCD topology in hard
processes using the formalism based on factorization the-
orems [12]. From the QCD factorization point of view, the
cross section in high energy collision can be factorized
into a convolution of perturbatively calculable partonic
cross section and the nonperturbative but universal parton
distribution and fragmentation functions (FFs). In the
conventional formalism, these distribution and FFs are

required to be P even because of the parity-conserving
nature of the strong interaction. However, in the presence
of local (in space and time) P -odd domains, P -odd FFs
can emerge [13]; note that only the cross section of the
entire process has to be P even, not the FFs.
In this Letter, we derive the most general form of the

quark FF for a quark fragmenting into a pseudoscalar
meson, which is consistent with the Lorentz invariance.
Abandoning the parity constraint, we obtain two P odd
FFs besides the well-known P -even spin-averaged FF [14]
and Collins function [15]. We obtain the exact operator
definitions and estimate the size of these new P -odd FFs
using the chiral quark model [16]. As a first step, we
present their observable effect in the back-to-back diha-
dron production in eþe� collisions. We encourage the
experimentalists to carry out the related analyses at
RHIC and elsewhere.
2. Quark FFs in locally P -odd background.—The quark

FFs are defined through the following matrix [17]:

�ðz; p?Þ ¼ 1

z

Z dy�d2y?
ð2�Þ3 eik�yh0jLyc ðyÞjPXi

� hPXj �c ð0ÞLy
0 j0ijyþ¼0; (1)

where p is the momentum of the final state hadron with a
transverse component p? relative to the fragmenting quark
k. We choose the hadron moving along þẑ direction, and
define two lightlike vectors: �n� ¼ ��þ and n� ¼ ���.
The momentum fraction z ¼ pþ=kþ, and ~k? ¼ � ~p?=z.
Ly ¼ P exp½igR1

0 d�nAðyþ �nÞ� is the gauge link

needed to make �ðz; p?Þ gauge invariant.
Since QCD is a theory conserving C, P , andT globally,

one usually expands the above matrix using the following
constraints [18]:
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Hermiticity : �yðp; kÞ ¼ �0�ðp; kÞ�0;

Parity: �ðp; kÞ ¼ �0�ð �p; �kÞ�0;

Time-reversal: ��ðp; kÞ ¼ VT�ð �p; �kÞV�1
T

(2)

where VT ¼ i�1�3 and �p� ¼ p� ¼ ðp0;� ~pÞ. Using the

basis of gamma matrices � ¼ f1; ��; ���5; ��	; i�5g, and
the available momenta p and k, one can expand �ðp; kÞ in
the most general form:

�ðp; kÞ ¼
�
MA11þ A2pþ A3kþ A4�

�	
k�p	

M

�

þ
�
A5p�

5 þ A6k�
5 þMA7i�

5

þ A8�
�	i�5

k�p	

M

�
; (3)

whereM is the hadron mass used to make all Ai’s have the
same dimension. Since the time-reversal changes out-state
to in-state, it does not really give any constraint on
the coefficients Ai [18]. If one applies the Hermiticity
constraint, all of the Ai’s have to be real. If one further
applies Parity constraint, one finds A5¼A6¼A7¼A8¼0.
However, as we stated in the Introduction, we are inter-
ested in the situation in which a local P -odd domain
develops in space-time, and the quark fragmentation hap-
pens inside such a P -odd domain (or in other words, the
quark scatters off the nontrivial gauge field configuration
prior to transforming into a pseudoscalar meson). In this
case, the P -odd modes in the quark fragmentation could be
populated [13] and one has to release the parity constraint
in Eq. (2). Note that even though the FF is not a local
quantity [the gauge link in Eq. (1) extends to infinity along
the light-cone], a P -odd domain in Minkowski space is
elongated along the light-cone [13], and thus the P -odd
terms do not average to zero. Without parity constraint, we
thus need to keep all 8 terms A1 through A8 in Eq. (5).
Applying the twist expansion by parametrizing the mo-
menta as p� � pþ �n� and k� � ðpþ �n� � p�

?Þ=z and

keeping the leading terms,

�ðz;p?Þ¼ 1

2

�
Dðz;p2

?Þ �nþH?
1 ðz;p2

?Þ��	
p?� �n	
M

�

þ 1

2

�
~Dðz;p2

?Þ �n�5þ ~H?
1 ðz;p2

?Þ��	i�5
p?� �n	
M

�

(4)

where Dðz; p2
?Þ and H?

1 ðz; p2
?Þ are the usual P -even FFs:

Dðz; p2
?Þ is the transverse momentum dependent

spin-averaged FF [14], and H?
1 ðz; p2

?Þ is the Collins func-
tion describing a transversely polarized quark fragmenting
into an unpolarized hadron [15]. Now besides the two
conventional P -even FFs, we also obtain two new P -odd

FFs: ~Dðz; p2
?Þ and ~H?

1 ðz; p2
?Þ. As we will show below,

~H?
1 ðz; p2

?Þ generates a new kind of azimuthal correlation.

Its role is similar to H?
1 ðz; p2

?Þ: H?
1 ðz; p2

?Þ represents an
asymmetric distribution / ðp̂� p?Þ � ~sq, while ~H?

1 ðz; p2
?Þ

represents an asymmetric distribution/ p? � ~sq for a trans-
versely polarized quark with spin vector ~sq to fragment into

a pseudoscalar meson.
In order to study the experimental effects generated by

these P -odd FFs, we need to estimate their magnitude. For
this purpose we use the effective chiral quark model de-
veloped by Manohar and Georgi [16], which is an effective
theory of QCD at low energy scale. This model has also
been adopted for an estimate of the Collins functions in
[19,20]. The effective Lagrangian describing the interac-
tion between the quarks and the pion in the leading order is
given by

Lqq� ¼ � gA
2f�

�c q�
��5 ~
 � @� ~�c q (5)

where f� � 93 MeV is the pseudoscalar decay constant.
At tree level, the fragmentation of a quark is modeled

through the process q� ! �q [see Fig. 1]. P -even FFs
Dðz; p2

?Þ and H?
1 ðz; p2

?Þ in Eq. (4) have been estimated

in the chiral quark model (see Ref. [19]).
Since the chiral quark model Lagarangian in Eq. (5)

conserves parity, it does not generate P -odd FFs
~Dðz; p2

?Þ and ~H?
1 ðz; p2

?Þ. As we stated in the

Introduction, QCD contains topological gauge field con-
figurations, and their effect can be mimicked by an
effective space-time-dependent � field [5,6]. One can
thus add to the Lagrangian of QCD the term
ðg2=32�2Þ�ðx; tÞF�	

a ~Fa
�	; performing an axial Uð1Þ rota-

tion this term can be transformed into 1
2Nf

@�� �c q�
��5c q

[9]. Let us define an effective ��� � @��=2Nf, whose zero

(time) component is the chiral chemical potential �5 [9].
This new term leads to the following equation of motion
for the quark field c ðxÞ:

ði@�mþ ���5Þc ðxÞ ¼ 0; (6)

which is not P invariant any more, and yields a modified

quark propagator i~Sðp; ��Þ ¼ i=ðp�mþ ���5Þ given by

i~Sðp; ��Þ ¼ i½PRSðpþ ��Þ þ PLSðp� ��Þ�
� f1þm�5½Sðpþ ��Þ � Sðp� ��Þ�g

�
�
1þ 4m2 ��2

½ðpþ ��Þ2 �m2�½ðp� ��Þ2 �m2�
��1

(7)

k

p

FIG. 1 (color online). Lowest-order Feynman diagram for a
quark with momentum k fragmenting into a � meson with
momentum p.
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where PL;R are the left (right) projection operators

PL;R ¼ ð1	 �5Þ=2, and iSðpÞ ¼ iðpþmÞ=ðp2 �m2Þ is
the conventional quark propagator. Note that we have
treated �� as a constant in deriving Eq. (7). This is because
the time scale associated with the soft nonperturba-
tive dynamics in the FFs due to the nontrivial gauge field
configurations tsoft � 1=�QCD is much longer than the time

scale for the hard collision thard � 1=Q, so the soft gauge
fields are effectively frozen during hard scattering in each
event, and �� can be considered constant. With the P -odd
terms contained in the quark field c ðxÞ, we can now derive
the P -odd FFs directly from Eqs. (1) and (4). To the first
nontrivial order, h0jc ðyÞjPXi is proportional to

where uðk� pÞ is the wave function for the final-state
quark with momentum k� p. Using a similar expression
for hPXj �c ð0Þj0i, we immediately obtain the results for the
P -odd FFs. In terms of Feynman diagrams, they are rep-
resented by Fig. 1.

Our calculations further imply that these new FFs are
suppressed by a factor ��0;3=pþ when ��� is along time or
z direction. Since pþ is a large component in our twist
expansion, we thus neglect the contribution of the 0,
3 components of �� to be self-consistent. On the other
hand, if the �� is along the transverse direction that is
perpendicular to p?, we find that the P -odd FFs vanish.
We thus only consider the situation when �� is along the
p? direction: ��� ¼ ��?p̂

�
?, in which case we find

~Dðz; p2
?Þ ¼

g2A
64f2��

3z

4 ��?p?
p2
? þ z2m2

q þ ð1� zÞm2
�

�
�
1� z

2
� 4ð1� zÞ2z2m2

qm
2
�

ðp2
? þ z2m2

q þ ð1� zÞm2
�Þ2

�
;

(9)

~H?
1 ðz; p2

?Þ ¼
g2A
4f2�

mqm�

8�3

��?
p?

1

½p2
? þ z2m2

q þ ð1� zÞm2
��3

� fðp2
? þ z2m2

qÞ2ðz� 2Þ þ ð1� zÞ2
�m2

�½ð3z� 2Þm2
� � 4ðp2

? � z2m2
qÞ�g;

(10)

which is valid when ��? 
 p?, pþ, since we do an expan-
sion and neglect terms �Oð ��2Þ. From the above equations
we see that both of the P -odd FFs are proportional to
��?=p?. Since p? is a small component, the effect is not
suppressed. We will now estimate the size of the observ-
able effect generated by the P -odd FFs within the same
model.

3. Observable effect of parity-odd FFs.—Let us now
discuss the experimental consequences of the P -odd FFs.
As a first step, we study a relatively simple process, the

back-to-back dihadron production in eþe� collisions
eþe� ! h1h2 þ X. The method we presented here can
be generalized to study P -odd effects in heavy ion
collisions.
At leading order in QCD coupling, the two hadrons h1

and h2 in e
þe� collisions are the fragmentation products of

a quark and an antiquark originating from eþe� ! q �q
annihilation. Following Ref. [21], we choose a reference
frame such that the eþe� ! q �q annihilation occurs in the
x-z plane, with the back-to-back quark and antiquark mov-
ing along the z axis. The final hadrons h1 and h2 carry
light-cone momentum fractions z1 and z2 and have intrinsic
transverse momenta p1? and p2? with respect to the
directions of the fragmenting quarks. Using the fragmen-
tation parametrization in Eq. (4), one can derive the dif-
ferential cross section as

d�

dPS
¼ �0

X
q

e2qfð1þ cos2�Þ½Dqðz1ÞD �qðz2Þ

� ~Dqðz1Þ ~D �qðz2Þ� þ sin2� cosð�1 þ�2Þ
� ½H?

q ðz1ÞH?
�q ðz2Þ þ ~H?

q ðz1Þ ~H?
�q ðz2Þ�

þ sin2� sinð�1 þ�2Þ½H?
q ðz1Þ ~H?

�q ðz2Þ
� ~H?

q ðz1ÞH?
�q ðz2Þ�g; (11)

where the phase space dPS ¼ dz1dz2d cos�dð�1 þ�2Þ,
�0 ¼ Nc�

2
em=4Q

2, and � is the angle between the initial
beam direction and the z axis, not to be confused with the
�ðxÞ field. In Eq. (11), we have integrated over the moduli
of the intrinsic momenta, p1? and p2?, and over the
azimuthal angle �1. The p?-integrated functions DqðzÞ
and H?

q ðzÞ are defined as

DqðzÞ ¼
Z

d2p?Dqðz; p2
?Þ;

H?
q ðzÞ ¼

Z
d2p?

j ~p?j
M

H?q
1 ðz; p2

?Þ:
(12)

The definition of ~DqðzÞ [or ~H?
�q ðzÞ] is similar to DqðzÞ

[or H?
q ðzÞ].

The cosð�1 þ�2Þ correlation is usually referred to as
the Collins effect, analyzed recently by BELLE
Collaboration [22,23]. However, we find that the product

of two P -odd FFs ~H?
q ðzÞ leads to the same azimuthal

correlation. We emphasize that such products of two
P -odd functions in general do not average to zero. They
are proportional to h@��ðxÞ@��ðx0Þi, and thus are con-

nected to the correlator of pseudoscalar gluon field opera-
tors hF ~FðxÞF ~Fðx0Þi that does not vanish [24]. The existence
of this term complicates the extraction of the Collins
function, but may in effect provide an alternative view of
the origin of the Collins effect and puts an experimental

constraint of the P -odd FF ~H?
q ðzÞ. It is interesting that a

new azimuthal correlation also emerges: the sinð�1 þ�2Þ
term, which is explicitly P odd. Note that for the
sinð�1 þ�2Þ contribution, the first term corresponds to
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the situation when the antiquark fragments inside the
P -odd bubble, whereas the second term corresponds to
the situation when the quark fragments inside the P -odd
bubble. They have the opposite sign, and thus when aver-
aged over many events, the effect will vanish. Thus a
P -odd effect happens only on the event-by-event basis [8].

To estimate the effect, let us assume that the antiquark
fragments inside the P -odd bubble; the relative magnitude
of the correlation will depend on the following factor
Ið ��; z1; z2Þ, besides the kinematic factor sin2�=ð1þ cos2�Þ,

Ið ��; z1; z2Þ ¼
H?

q ðz1Þ ~H?
�q ðz2Þ

Dqðz1ÞD �qðz2Þ � ~Dqðz1Þ ~D �qðz2Þ
: (14)

Certainly Ið ��; z1; z2Þ depends on the size of ��?.
To estimate ��?, we resort to the instanton vacuummodel

(for a review, see [25]). According to [25], the two most
important parameters are the mean size of the instanton
�� 1=3 fm and the typical separation R between instan-
tons, with �=R� 1=3. The spatial gradient of the effective
field �ðxÞ within the instanton vacuum model is propor-
tional to the inverse instanton size ��1 that is the only
dimensionful parameter characterizing the solution. The
probability for a quark moving along the light cone to
interact with the instanton is ��2=R2; note that in
Minkowski space-time the instanton event is elongated
along the light cone [13]. We thus estimate the average
value of ��? sampled by the quark in a given event as

h ��?i � 1

2Nf

h@?�ð ~x; tÞi � 1

2Nf

1

�

�2

R2
� 10 MeV; (15)

where we have used Nf ¼ 3, @?� � ��=�x? with

���Oð1Þ and �x? � �. With ��? ¼ 10 MeV, and other
standard parameters of the chiral quark model [16], and
using the calculation of the FFs taken from Ref. [19], we
find Ið ��; z1; z2Þ � 1:5% for a typical z1 ¼ z2 ¼ 0:5 at
BELLE experiment, with the final two hadrons as �þ
and ��. We urge the experimentalists at BELLE, RHIC,
and elsewhere to carry out an analysis to constrain the
P -odd FFs. Because of the universality of the FFs, we
expect that the formalism developed here could be gener-
alized to other processes.

4. Conclusion.—In this Letter we have studied the quark
fragmentation in the topologically nontrivial QCD back-
ground. We have found two new FFs besides the well-
known spin-averaged FF and the Collins function. Both of
the new FFs are P odd. We have related the magnitude of
these functions to the typical size of the topological fluc-
tuations [described by the effective �ðxÞ field]. We have
studied the observable effects of the P -odd FFs in back-to-
back dihadron production in eþe� collisions, and have
found that a new azimuthal correlation / sinð�1 þ�2Þ
appears. Since the new azimuthal correlation is explicitly
P odd, it can be observed only on an event-by-event basis.
Our results also offer a new interpretation of the Collins

correlation. We encourage the experimentalists to carry out
an analysis to constrain the P -odd FFs, and anticipate new
applications.
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