
Absence of Thermalization in Nonintegrable Systems

Christian Gogolin,1,2,3 Markus P. Müller,1,4 and Jens Eisert1,5

1Institute for Physics and Astronomy, Potsdam University, 14476 Potsdam, Germany
2Fakultät für Physik und Astronomie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

3Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom
4Institute of Mathematics, Technical University of Berlin, 10623 Berlin, Germany

5Institute for Advanced Study Berlin, 14193 Berlin, Germany
(Received 26 October 2010; published 24 January 2011)

We establish a link between unitary relaxation dynamics after a quench in closed many-body systems

and the entanglement in the energy eigenbasis. We find that even if reduced states equilibrate, they can

have memory on the initial conditions even in certain models that are far from integrable. We show that in

such situations the equilibrium states are still described by a maximum entropy or generalized Gibbs

ensemble, regardless of whether a model is integrable or not, thereby contributing to a recent debate. In

addition, we discuss individual aspects of the thermalization process, comment on the role of Anderson

localization, and collect and compare different notions of integrability.
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The question of how quantum many-body systems in
nonequilibrium eventually equilibrate and assume proper-
ties resembling the ones familiar from statistical mechan-
ics has—quite unsurprisingly—a very long tradition [1].
In closed systems not all observables can equilibrate.
However, it is generally expected that in sufficiently
complicated quantum many-body systems at least some
physically relevant quantities should seemingly relax to
equilibrium values. Recently this old question has received
an enormous amount of attention and there have been
significant new insights [2–18].

This renewed attention is partly driven by new mathe-
matical methods becoming available, partly by novel nu-
merical techniques, and in part by experiments that make it
possible to probe coherent nonequilibrium dynamics under
the controlled conditions offered by cold atoms in optical
lattices [19]. Theoretically, the question of how quantum
many-body systems relax locally has been investigated in
the light of the ‘‘eigenstate thermalization hypothesis’’
(ETH) [2,3], quantum central limit theorems [4],
Anderson localization [7], dynamical instances of concen-
tration of measure arguments or ideas of relaxation via
dephasing [8–13,16], and numerically using time-
dependent density-matrix renormalization group [20].
Despite this enormous effort, major questions remain
open and the existing results do not yet draw a coherent
picture. What seems to have become consensus, however,
is that the following expectation holds true: Nonintegrable
systems thermalize.

In this Letter we show that generally this is not quite
true. We do so by establishing a link between the entangle-
ment in the eigenbasis of a quantum many-body system
with what could be called the thermalization potential of
the system. We will investigate situations in which systems
equilibrate, in the sense that all local observables will be
close to some equilibrium value at most times, but those

values turn out to depend on the details of the initial state.
This general rigorous statement is exemplified numerically
by studying a small natural nonintegrable XYZ-type spin
chain model. In previous approaches (e.g., in Ref. [21]),
similar complementing observations have been made by
simulating the model’s time evolution explicitly. However,
such simulations can only trace the system’s behavior for a
finite amount of time. Our analytic results have applica-
tions far beyond this particular model: they yield general
conditions for the absence of thermalization. This gives a
natural counterpart of the ETH, and it relates the thermal-
ization of isolated quantum systems to the presence of
entanglement in the energy eigenbasis.
Setup and notation.—Whenever using terms and con-

cepts borrowed from classical statistical mechanics, such
as ergodicity, equilibration, thermalization, initial state
independence, and integrability, we aim at being careful
and precise. We work in the pure state quantum statistical
mechanics model with a system and bath setup with a
global pure state and unitary time evolution [4,8–12]. We
are mostly interested in the case where the full system is
composed of many interacting small systems and the sub-
system corresponds to a small subset of sites and the bath is
simply the remainder. In such systems the individual sub-
systems act as baths for each other and the collective
dynamics can lead to self-thermalization of the whole
system. To be specific, we will consider arbitrary quantum
systems equipped with a Hilbert space H of finite dimen-
sion d that can be divided into at least two parts, i.e.,H ¼
H S �H B, which we will call the subsystem S and the
bath B, and which are described by Hilbert spaces of
dimensions dS=B ¼ dimðH S=BÞ. We assume that at every

time t the joint system is in a pure state c t ¼ jc tihc tj,
evolving unitarily. The reduced states on subsystem and
bath are denoted using superscript letters, such as c S ¼
TrB½c �. We denote the Hamiltonian of the full system byH
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and its eigenvectors and eigenvalues by jEki and Ek, k ¼
1; . . . ; d (regardless of degeneracies).

Thermalization.—Thermalization is a complicated
process. For it to happen a system must exhibit certain
properties, each of which captures a specific aspect of
thermalization [9,11].

(1) Equilibration: The tendency to evolve towards equi-
librium is a key assumption in classical statistical physics
and part of the second law of thermodynamics. In contrast
to that, in the framework of pure state quantum statistical
mechanics, equilibration for almost all times can instead be
proven to be a consequence of unitary time evolution [9].

(2) Subsystem initial state independence: The equilib-
rium state of a small subsystem should be independent of
the initial state of that subsystem. This aspect of thermal-
ization will be the main subject of the present work.

(3) Diagonal form of the subsystem equilibrium state:
The equilibrium state of a small subsystem should be
(close to) diagonal in the energy eigenbasis of its self-
Hamiltonian [8].

(4) Bath state independence: It is expected that the
equilibrium expectation values of local observables on a
small subsystem are almost independent of the details of
the initial state of the rest of the system, but rather only
depend on its macroscopic properties, such as the energy
density.

(5) Gibbs state: Ultimately, one would like to recover the
standard assumption of classical statistical physics that
the equilibrium state is of (or at least close to) a Gibbs
state!S � e��HS with an inverse temperature� and a self-
Hamiltonian HS. As in conventional statistical physics,
this can only be expected to be true if the coupling is
weak but nonperturbative and the bath has a spectrum
that gets exponentially dense for higher energies [14,15].

Integrability.—In classical mechanics integrability is a
well-defined concept [22]. In quantum mechanics, despite
the common use of the term ‘‘integrable,’’ the situation
is much less clear [24], and different criteria are being
applied in the literature. The most common notions of
integrability are the following: (A) There exist n indepen-
dent (local) conserved mutually commuting linearly inde-
pendent operators, where n is the number of degrees
of freedom (see, e.g., Ref. [23]). In contrast to the
classical situation [22], this does not necessarily imply
that the system is ‘‘exactly solvable.’’ (B) Identical with
criterion (A), but with linear independence replaced by
algebraic independence [23]. (C) The system is integrable
by the Bethe ansatz [23]. (D) The system exhibits
nondiffractive scattering [23]. (E) The quantum many-
body system is exactly solvable in any way. Of course,
this criterion is subject to the ambiguity of a lack of
imagination of solving a given model.

Equilibration.—Quantum mechanics of closed systems
is time reversal invariant and thus equilibration in the usual
sense is impossible. Therefore we use an extended notion
of equilibration and say that an observable A equilibrates if
its expectation value Tr½Ac t� is close to some value for

almost all times t. Of particular interest are local observ-
ables, i.e., observables that are sums of terms that each act
only on small subsystems. Saying that all observables on
some subsystem S equilibrate is equivalent to saying that
the state c S

t of the subsystem equilibrates, by which we
mean that there exists a state �S such that c S

t is almost
always physically indistinguishable from �S, in the sense
that their trace distance Dðc S

t ; �
SÞ ¼ 1

2 kc S
t � �Sk1 ¼

max0�A�ITr½Ac S
t � � Tr½A�S� is small for almost all

times t. If the expectation value Tr½Ac t� of an observable
A equilibrates in the sense defined above, then it must

equilibrate towards its time average Tr½Ac t� ¼ Tr½A �c t�.
This is an obvious but important observation. A good
understanding of the properties of the time averaged state

! ¼ �c t ¼ lim
�!1

1

�

Z �

0
c tdt (1)

is thus key to understanding equilibrium properties.
Generalized Gibbs ensemble.—Every Hamiltonian H

defines a set of conserved observables. In the nondegener-
ate case they are exactly the linear combinations of
projectors onto the eigenstates of H; in the degenerate
case they are the observables with support on the blocks
corresponding to the degenerate subspaces. Clearly, the
time average ! ¼ �c t of the state c 0 itself is given by
! ¼ Pðc 0Þ, where Pðc 0Þ ¼ P

j�jc 0�j, where �j ¼P
k2Ij

jEkihEkj are the projections onto (possibly degener-

ate) eigenspaces, Ek ¼ El for k; l 2 Ij. Every state � that

gives the same values for all conserved observables as c 0

satisfies Pðc 0Þ ¼ Pð�Þ, and! ¼ Pðc 0Þ is the state having
maximum entropy among all such states. This follows
directly from the pinching inequality (Theorem V.2.1 in
Ref. [25]) since the von Neumann entropy is Schur con-
cave. All equilibrium expectation values can be calculated
from the maximum entropy state !. This is a quantum
version of Jaynes’ principle and was recently conjectured
as generalized Gibbs ensemble in Ref. [18].
Moreover, under the assumption of nondegenerate en-

ergy gaps it can be rigorously proven under which con-
ditions equilibration (but not necessarily thermalization)
happens [9,13]. The certificate quantifying the quality
of equilibration is the effective dimension of the time
averaged state deffð!Þ ¼ 1=Tr½!2�, which, for quenches
to nondegenerate Hamiltonians, is identical to the inverse
of the time average of the Loschmidt echo and the inverse
participation ratio of the initial state [26]. The main result
of Ref. [9] is

Dðc S
t ; !

SÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2S

deffð!Þ

s
¼ Ceqðc 0Þ; (2)

and we call Ceqðc 0Þ the equilibration coefficient of the

initial state c 0 as it bounds the equilibration radius.
Main result.—In systems that behave thermodynami-

cally the equilibrium expectation values of local observ-
ables on small subsystems should be independent of the
initial state of the subsystem. A previous positive result in
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this direction was made in Ref. [9] (see also Refs. [11,12]).
Here we follow a converse approach and proof a sufficient
condition for the absence of initial state independence.

A quantity that will play an important role in our main
result is the effective entanglement in the eigenbasis, given
for a nondegenerate H by

Rðc 0Þ ¼
X
k

jckj2DðTrBjEkihEkj; c S
0Þ; (3)

with ck ¼ hEkjc 0i. This quantity is small, if most energy
eigenstates either resemble locally the system’s initial
state c S

0 or are globally almost orthogonal to c 0. As will

become apparent later, this is, in particular, the case if the
reductions of the jEkihEkj are close to a basis for S. This
can be interpreted as a natural counterpart of the ETH [2]:
If ‘‘most’’ energy eigenstates have reduced states close to
some �S, then the system will relax locally to �S.

We will now show that a small value of R implies that
initial state independence is not satisfied. Remarkably,
this is not a matter of time scales: It will not only take a
long time to relax, but one will rather encounter a
memory for almost all times.

Theorem 1 (Nonthermalization). The physical distin-

guishability of the two local time averaged states !Sð1Þ and
!Sð2Þ of two pure initial product states c ðiÞ

0 ¼ c SðiÞ
0 ��BðiÞ

0 ,

i 2 f1; 2g evolving under a nondegenerate Hamiltonian H
is large in the sense that

D ð!Sð1Þ; !Sð2ÞÞ � Dðc Sð1Þ
0 ; c Sð2Þ

0 Þ � Rðc ð1Þ
0 Þ � Rðc ð2Þ

0 Þ:
In the degenerate case, the quantity R has to be replaced by

Rðc 0Þ ¼
X
k

hc 0j�kjc 0iD
�
TrBð�kc 0�kÞ
hc 0j�kjc 0i ; c S

0

�
:

That is to say, subsystems remain distinguishable if they
are initially well distinguishable and one has little effective
entanglement in the eigenbasis. Note also that the environ-

ment states �Bð1Þ
0 and �Bð2Þ

0 can be taken to be identical.

Proof. If the Hamiltonian H is nondegenerate, !SðiÞ ¼P
kjcðiÞk j2TrBjEkihEkj, and thus

Dðc S
0 ; !

SÞ ¼ 1

2

�����c S
0 �

X
k

jckj2TrBjEkihEkj
�����
1

� X
k

jckj2 12 kc
S
0 � TrBjEkihEkjk1 ¼ Rðc 0Þ:

The desired result then follows from Dðc Sð1Þ
0 ; c Sð2Þ

0 Þ �
Dðc Sð1Þ

0 ; !Sð1ÞÞ þDð!Sð1Þ; !Sð2ÞÞ þDð!Sð2Þ; c Sð2Þ
0 Þ. In

the degenerate case, the same argument can be followed
for the projectors �k onto the respective eigenspaces. j

The intuition that R will be small when the jEki have
certain properties can be made rigorous in the case where
the TrBjEkihEkj are close to a basis of S. In this case we can
show that there exist many initial states for the bath that
lead to a small R and a large effective dimension at the
same time, thus causing ‘‘equilibration without thermal-
ization.’’ This is shown using Haar-measure averages, from
which the existence follows [27].

Theorem 2 (Entanglement in eigenbasis). For every
orthonormal basis fjiig for S and every initial product state
with c S

0 ¼ jiihij for some i and with Haar random initial

bath part �B
0 , the effective entanglement in the eigenbasis

for nondegenerate H is on average upper bounded by

E �B
0
Rðc S

0 ��B
0 Þ � 2�dS;

where � ¼ maxk�k with �k ¼ miniDðTrBjEkihEkj; jiihijÞ
being the geometric measure of entanglement of the
eigenstate jEki with respect to the basis fjiig.
Proof. Note that Tr½TrBjEkihEkjc S

0� � 1�DðTrBjEki
hEkj; c S

0Þ2 and thus all nonzero jckj2 in Eq. (3) can be upper
bounded by

Tr½jEkihEkjðc S
0 ��B

0 Þ�
Tr½TrBjEkihEkjc S

0�
ð1�DðTrBjEkihEkj; c S

0Þ2Þ:

As ð1�DðTrBjEkihEkj; c S
0Þ2ÞDðTrBjEkihEkj; c S

0Þ � 2�,

Rðc 0Þ � 2�
X
k

Tr½jEkihEkjðc S
0 ��B

0 Þ�
Tr½TrBjEkihEkjc S

0�
:

Averaging over all pure states�B
0 gives the mean 1=dB and

the sum in the last line is thus upper bounded by dS. j
Note that Theorem 2 implies that whenever a basis fjiig

exists for which � is small, then for every i there exist
many bath states�B

0 such that Rðjiihij ��B
0 Þ � 2�dS [27].

Furthermore, almost all of them will lead to a high effec-
tive dimension [9,12]. Obviously the argument can be
further strengthened by maximizing � only over a subspace
that contains most of the probability weight of c 0: This
allows some of the �k to be large, as long as the corre-
sponding jckj2 are small.
Application to a nonintegrable model.—The model we

consider is a spin-1=2 XYZ chain with n sites with random
coupling and on-site field. The Hamiltonian is

H ¼ H0 þH1 ¼
Xn
i¼1

hi�
Z
i þ

Xn�1

i¼1

~bi � ~�NN
i ; (4)

where ~�NN
i ¼ ð�X

i �
X
iþ1; �

Y
i �

Y
iþ1; �

Z
i �

Z
iþ1ÞT in terms of the

Pauli matrices at site i, and hi and the components of ~bi are
independent normal distributed random variables with zero
mean and standard deviations �0 and �1, respectively. The
model is closely related to the one studied in Ref. [7]. With
unit probability the Hamiltonian is nondegenerate and has
nondegenerate gaps. We investigate the equilibration prop-
erties of the eigenstates ofH0 after a quench toH via exact
diagonalization for �1 ¼ 0:4�0. Hence the integrability
breaking term H1 is far from being a small perturbation
and H is nonintegrable in the sense of all of the aforemen-
tioned definitions of integrability. According to the widely
accepted belief [3,20,21], one would therefore expect to
find thermalization. However, the numerics suggests that
after the quench all local observables equilibrate, but retain
memory on the initial conditions, and thus initial state
independence is violated. This conclusion is reached not
by keeping track of time evolution, but rather by checking
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the conditions of Theorem 1 (see Fig. 1). It is a challenge
to construct nonintegrable models without disorder that
violate initial state independence.

Summary and conclusions.—We have established
rigorous results that identified a lack of entanglement in
the energy eigenbasis as the reason for an ‘‘equilibration
without thermalization’’ phenomenon: all local observables
equilibrate but retain memory on their initial values for
infinitely long time. By considering a particular model we
exemplify that such approximately conserved quantities
can exist even in nonintegrable models. Such models may
not saturate Lieb-Robinson bounds; i.e., there probably is
no ballistic propagation of information. Certainly, interest-
ing physical candidates for such models are to be found in
disordered systems: The Anderson model, for example, has
eigenfunctions that are exponentially localized with high
probability [28]. It is the hope that this work stimulates
further research on this connection.
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FIG. 1 (color online). The subsystem is taken to be the first site
S ¼ 1 in the spin chain of n sites, other choices give qualitatively
the same results. For each of the product eigenvectors jE0

ki of H0

we compare the equilibration properties of c ð1Þ
0 ¼ jE0

ki with that

of c ð2Þ
0 ¼ �X

S jE0
ki (i.e., the same state but with the first spin

flipped) under the dynamics of H with �1 ¼ 0:4�0. Panels (a),
(b) display averages over eigenstates. (a) Average geometric
measure of entanglement Eð�kÞ with respect to the H0 eigenbasis
and average distance of the reduced time averaged states
EðDð!Sð1Þ; !Sð2ÞÞÞ. (b) Average effective dimension and equili-
bration coefficient [see Eq. (2)]. Panels (c),(d) show quantities
optimized over eigenstates. (c) Maximum distinguishability

maxk�ðjEð0Þ
k iÞ, where �ðjEð0Þ

k iÞ ¼ Dð!Sð1Þ; !Sð2ÞÞ � Ceqðc ð1Þ
0 Þ�

Ceqðc ð2Þ
0 Þ (�> 0 ensures distinguishability for almost all times.

See the inset for an artist’s impression). (d) Effective dimension

and equilibration coefficient of the state maximizing �ðjEð0Þ
k iÞ.

All quantities have been averaged over 100 samples from the
random Hamiltonian ensemble (4). The error bars represent
the standard deviation. deff increases rapidly with n; hence,
equilibration gets better, while the time averaged states on S
remain well distinguishable. Remarkably the observable that
best distinguishes the equilibrium states is �Z

S . We find ‘‘equili-

bration without thermalization’’ for a very natural observable.
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