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We present a theoretical model of facilitated diffusion of proteins in the cell nucleus. This model, which

takes into account the successive binding and unbinding events of proteins to DNA, relies on a fractal

description of the chromatin which has been recently evidenced experimentally. Facilitated diffusion is

shown quantitatively to be favorable for a fast localization of a target locus by a transcription factor and

even to enable the minimization of the search time by tuning the affinity of the transcription factor with

DNA. This study shows the robustness of the facilitated diffusion mechanism, invoked so far only for

linear conformations of DNA.
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The now well established theory of facilitated diffusion
explains how DNA-binding proteins can in principle find
their target sites on DNA efficiently. This model describes
search trajectories as alternating phases of free diffusion in
the bulk cytoplasm and one-dimensional diffusion along
the DNA strand, called sliding, which is made possible by
sequence-independent interactions of proteins with DNA.
Since the seminal work in Ref. [1], such pathways have
been evidenced experimentally both in vivo [2] and in vitro
[3–5] thanks to single molecule technics, and theoretical
aspects have been refined [6–9], in particular, highlighting
that such strategies can minimize the search time for a
target site by a proper tuning of the protein-DNA interac-
tion [10–13].

All these theoretical approaches rely on a schematic
description of DNA as a one-dimensional linear chain
along which a protein can diffuse, surrounded by an ho-
mogeneous medium in which the protein performs regular
diffusion. More recently, crowding effects have been in-
corporated in these models for both the sliding [14] and the
bulk cytoplasmic phases [4], leading to more realistic
descriptions of gene regulation kinetics in prokaryotes.

However, such models are clearly inapplicable to eukar-
yotes, in which the DNA is packed in the cell nucleus [15]
and forms a complex structure called chromatin which is
far from a simple one-dimensional chain. Even if a full
bottom-up description of the in vivo DNA organization
remains out of reach, theoretical ideas [16] and now grow-
ing experimental evidences indicate that the chromatin has
a hierarchized architecture which displays fractal proper-
ties at least over the 100 nm–10 �m range. Indeed, tex-
tural image analysis, neutron scattering [17], rheology
technics [18], and more recently the Hi-C method [19]
revealed independently a fractal structure of the chromatin
characterized by a fractal dimension df which was found in

the range 2.2–3. Despite this complex structure of the
chromatin, the switching dynamics of proteins between
a DNA bound state and a freely diffusing state, which

characterizes facilitated diffusion in prokaryotes, seems
to be also at work in the nucleus, as evidenced on the
examples of histons, high-mobility group proteins, and
more generally chromatin binding proteins [20]. This natu-
rally raises the questions of determining whether the clas-
sical facilitated diffusion mechanism can be efficient also
in the complex nuclear environment and whether it can be
used to regulate and optimize gene expression in eukar-
yotes. This Letter presents a first theoretical model which
quantitatively addresses these two questions.
At the theoretical level, modeling facilitated diffusion in

the cell nucleus raises two problems: (i) first, to take into
account the switching dynamics of the protein between a
state bound to the chromatin and a freely diffusing state in
the nucleoplasm and (ii) second, to model the diffusion
phase of a protein bound to a complex structure such as
chromatin. Point (i) has been studied in the context of
intermittent search strategies [21], and general methods
to calculate mean search times for intermittent trajectories
have been developed. On the other hand, the full distribu-
tion of the first-passage time (FPT) for diffusion in fractals
has recently been obtained in Ref. [22] and enables us to
tackle point (ii) under the assumption, backed by experi-
ments [17–19], that the chromatin is fractal.
In this Letter, we gather and extend these new tools to

develop a theoretical model of facilitated diffusion in the
cell nucleus. More precisely, we calculate analytically the
mean search time for a target for a protein which alternates
diffusion phases on the chromatin, which is assumed to
have a fractal structure, and free diffusion phases in the
nucleoplasm (see Fig. 1). Under these hypotheses, we show
quantitatively that facilitated diffusion in eukaryotes can
significantly speed up the search process and that it enables
us to minimize the search time by tuning the affinity of the
protein with DNA. These results are qualitatively similar
to the case of prokaryotes and suggest that facilitated
diffusion is a robust mechanism. At the theoretical level,
this study yields as a by-product the calculation of the
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distribution of the FPT averaged over the starting point for
a particle diffusing in a fractal structure, which remained a
challenge in the field [23–26].

Search time distribution for simple diffusion in a fractal
medium.—We first consider a protein which remains in an
adsorbed state and diffuses on the chromatin, which is
modeled by a discretized domain D of volume N and,
following experimental observations [17–19], is character-

ized by a fractal dimension df and a typical size R / N1=df .

We calculate here the distribution of the search time,
defined as the FPT at the target, averaged over the starting
position of the protein. This first technical step is necessary
to address the problem of facilitated diffusion discussed in
the next paragraph; besides, it is an important theoretical
question. The protein of position rðtÞ is assumed to perform
a symmetric nearest neighbor random walk on the chro-
matin with a constant hopping rate (set to 1). To account for
the complex organization of DNA-DNA contact points, the
chromatin cannot be described as a linear chain: It is
effectively branched even if the DNA is linear, yielding a
connectivity potentially larger than 2 which takes into
account intersegmental transfer. The resulting dynamics
is characterized by the walk dimension dw defined through
the scaling of the mean square displacement with time:

hr2ðtÞi / t2=dw , and the nuclear membrane which bounds
the chromatin is assumed to act as reflecting walls. As
we proceed to show, the search time distribution is inde-
pendent of these microscopic details of the chromatin
conformation and is governed only by its larger scale
properties, which are characterized by df and dw.

We denote by WjiðtÞ the propagator, i.e., the probability

that the protein, starting at site i at t ¼ 0, is at site j at time t,

and write Wstat
j for the stationary probability at site j. We

will make use of the pseudo-Green function of the walk
defined by Hji ¼

R1
t¼0½WjiðtÞ �Wstat

j �dt, and the Laplace

transform of a generic function fðtÞ will be denoted by f̂ðsÞ.
We are here interested in the global FPT (GFPT) at a given
target site T, which is the FPT at site T averaged over
the starting site S with weight Wstat

S . We thus define

the probability density �T of the GFPT by �TðtÞ ¼PN
j¼1 W

stat
j PTjðtÞ, where PTj is the probability density of

the FPT at T starting from a given site j.
General expressions have been derived for the first

moment of both the FPT [27] and the GFPT [28] (see
also [23–26] for specific examples), and more recently,
the higher FPT moments have been determined in the
large-volume limit N � 1 [22]. In the case of noncompact
exploration (dw < df), it reads

h�nTSi ¼ n!h�Tin HTT �HTS

HTT

; (1)

where h�Ti ¼ HTT=W
stat
T is the mean GFPT [28]. Using

next that HjiW
stat
i ¼ HijW

stat
j , deduced from detailed bal-

ance, and averaging over S, we obtain h�nTi ¼ n!h�Tin,
from which it can be deduced immediately that the
GFPT distribution is a simple exponential of mean h�Ti.
In the compact case (dw > df), however, it can be shown

that, due to a stronger dependence of h�nTSi on S [22,27],

the average over S must be taken before the large N limit,
which makes the asymptotic form of Ref. [22] unusable for
this purpose. Alternatively, one can make use of the re-
newal equation [29] which reads in Laplace space

P̂TSðsÞ ¼ ŴTSðsÞ=ŴTTðsÞ. By using the symmetry relation
WjiðtÞWstat

i ¼ WijðtÞWstat
j , the average over S can be taken

and yields an exact expression of the GFPT distribution:

�̂TðsÞ ¼ Wstat
T =½sŴTTðsÞ�. Taking next the large-volume

limit, the propagator ŴTTðsÞ can be evaluated by using
the O’Shaughnessy and Procaccia formalism [30], which
leads to

�̂ TðsÞ ¼
�

4

Ah�Tis
�
� �ð1þ �Þ
�ð1� �Þ

I�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ah�Tis

p Þ
I��ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ah�Tis

p Þ ; (2)

where � ¼ df=dw, A ¼ 2ð1� �2Þ=�, and I� (and later J�)

denote Bessel functions. Introducing the rescaled variable
� ¼ t=h�Ti, one finally obtains by inverse-Laplace trans-
forming (2):

QTð�Þ ¼
8><
>:
expð��Þ ðdw < dfÞ;
22��

ð1��2Þ
�ð1þ�Þ
�ð1��Þ

P1
k¼0 �

1�2�
k

J�ð�kÞ
J1��ð�kÞ exp

�
� �2

k
�

2ð1��2Þ �
�

ðdw > dfÞ; (3)

where the �k’s are the real zeros of J��.
This very general result, confirmed by numerical simu-

lations on various fractal sets (see Fig. 2 and [31]) shows

that the GFPT distribution takes a universal form indexed
by df and dw only for any fractal structure, independently

of its microscopic details. In particular, it shows the

FIG. 1 (color online). Facilitated diffusion on chromatin: A
chromatin binding protein (blue) searches for a target locus
(yellow) on chromatin (red). The binding (unbinding) rate is
denoted by �2 (�1).
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applicability of our approach to chromatin under the as-
sumption that it is fractal at least at a sufficiently large
scale. As illustrative examples, simulations were per-
formed on structures such as critical percolation clusters,
which capture the large scale properties of nuclear DNA
organization: They are (i) fractals characterized by well
defined dw and df, (ii) naturally embedded in Euclidean

space, and (iii) disordered. These fractals can therefore be
seen as minimal models of chromatin beyond the linear
chain description.

Search time distribution for facilitated diffusion in a
fractal medium.—Following the classical picture of facili-
tated diffusion, we now consider that the protein can desorb
from the chromatin with rate �1 and then freely diffuse in the
nucleoplasm before rebinding to the chromatin (see Fig. 1).
In this first approach, we adopt a mean field treatment of the
phases of free diffusion:We assume that the duration of such
a phase is exponentially distributed with mean �2 ¼ 1=�2

and further suppose that the protein rebinds at a position
which is uniformly distributed on the chromatin. We deter-
mine in this paragraph the mean time necessary for the
protein starting at a random position on the chromatin to
reach a target locus on the chromatin for the first time. We
denote by hTTi this mean GFPT for facilitated diffusion and
byFTðtÞ the GFPT probability density. By using tools devel-
oped in the context of intermittent search strategies [11,21], it

can be shown that the Laplace transform F̂T is expressed in

terms of the distribution �̂T of theGFPT for simple diffusion
on the chromatin, which is given by Eq. (2):

F̂ TðsÞ ¼ �̂Tð�1 þ sÞ
�
1� 1� �̂Tð�1 þ sÞ

ð1þ s
�1
Þð1þ s

�2
Þ
��1

: (4)

Assuming that diffusion on the chromatin is compact (as in
most examples of fractals embedded in 3D space [32]) and

using expression (2) for �̂T finally yields an explicit expres-
sion of the Laplace transformed distribution of the GFPT:

F̂TðsÞ ¼ ðsþ �1Þðsþ �2ÞI�ðxsÞ

�
�

�ð1� �Þ
4��ð1þ �Þ x

2�
s sðsþ �1 þ �2Þ

� I��ðxsÞ þ �1�2I�ðxsÞ
��1

; (5)

where xs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ah�Tiðsþ �1Þ

p
. One can check that the classi-

cal result of facilitated diffusion on a one-dimensional DNA
[11,21] is recovered for df ¼ 1 and dw ¼ 2. The mean

GFPT hTTi is then readily obtained by writing

hTTi ¼ �
�
@F̂T

@s

�
s¼0

¼
�
1

�1

þ 1

�2

�
1� �̂Tð�1Þ
�̂Tð�1Þ

; (6)

which finally yields the central result of this Letter:

hTTi ¼
�
1

�1

þ 1

�2

��
�ð1� �Þ
4��ð1þ �Þ

x2�0 I��ðx0Þ
I�ðx0Þ � 1

�
; (7)

with x0 � xs¼0. This exact expression of the mean search
time for facilitateddiffusion in a fractalmedium, validated by
numerical simulations on various examples of fractals which
mimic the large scale properties of chromatin (see Fig. 3 and
[31]), can be simplified as follows in the large N limit:

hTTi � hTTi1 �
�
1

�1

þ 1

�2

�
x2�0 �ð1� �Þ
4��ð1þ �Þ : (8)
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FIG. 2 (color online). Distribution of the GFPT for diffusion in
fractal medium in the compact case. Numerical simulations for
different system sizes N (symbols) are plotted against the
theoretical prediction of Eq. (3) (plain lines). (a) Sierpinski
gasket (target at the apex) and (b) critical bond percolation
cluster embedded in a 3D cubic lattice (average taken over
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Before commenting on this result, note that a limit distribu-
tion GT of the GFPT can be obtained by considering the
rescaled time � ¼ t=hTTi1. Denoting U ¼ shTTi1 the

Laplace variable associated to �, and writing ĜTðUÞ ¼
F̂TðU=hTTi1Þ, we find by using (5) in the large-volume limit

ĜTðUÞ � ð1þUÞ�1, which yields immediately the simple
exponential form GTð�Þ � expð��Þ.

Optimal search time.—We now comment on previous
results and focus on the minimization of the mean search
time (7) for facilitated diffusion. First note that hTTi1 / N
in the large-volume limit, which shows immediately that
facilitated diffusion is faster than diffusion alone, which

would yield a search time scaling as Ndw=df [28]. Actually,
the search time can be minimized as a function of the
desorption rate �1, as soon as the adsorption rate �2 is
large enough (see Fig. 3 and [31]). Quantitatively, the
function hTTi exhibits a minimum value for some �1 ¼
�min
1 if the value of the derivative of hTTi with respect to �1

at �1 ¼ 0 is negative. This sets the following condition
on �2:

�2 � �min
2 ¼ 4�ð4� �2Þ

h�Tið5þ 2�Þð1� �Þ2 ; (9)

which is in practice satisfied for a large enough chromatin
volume. Under this condition, a direct calculation shows
that the optimal value �min

1 can be expanded in the large-
volume limit as

�min
1

�2

’ 1� �

�
� �2ð�Þ sinð��Þ

�

�
2�2

h�Ti�2ð1þ �Þð1� �Þ2
�
�
:

(10)

One recovers, in particular, for df ¼ 1 and dw ¼ 2 the

celebrated result �min
1 ’ �2 [10,11].

Finally, these results show that facilitated diffusion is a
robust mechanism which can speed up the search for a
target site even in the case of eukaryotes, under the as-
sumption that the chromatin has a fractal organization,
which seems verified experimentally. We add that this
approach is independent of the microscopic structure of
the DNA and could also be valid to some extent in the case
of prokaryotes, where the DNA, even if less densely
packed than in eukaryotes, seems to have a rather compact
organization significantly departing from a linear chain.
Using typical experimental values dw ’ 3 and df ’ 2:5,

one finds that the search time is minimized for �min
1 =

�2 ’ 1=5. This suggests that the adsorption time should
be significantly larger than the time of free diffusion to
minimize the search, in contrast with the classical predic-
tion [10,11]. This result is qualitatively compatible with
experimental findings [2] on prokaryotes, even if the fractal
properties of the DNA structure need to be determined in
this case.
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