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Several quantum paramagnets exhibit magnetic-field-induced quantum phase transitions to an anti-

ferromagnetic state that exists for Hc1 � H � Hc2. For some of these compounds, there is a significant

asymmetry between the low- and high-field transitions. We present specific heat and thermal conductivity

measurements in NiCl2-4SCðNH2Þ2, together with calculations which show that the asymmetry is caused

by a strong mass renormalization due to quantum fluctuations for H � Hc1 that are absent for H � Hc2.

We argue that the enigmatic lack of asymmetry in thermal conductivity is due to a concomitant

renormalization of the impurity scattering.
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The correspondence between a spin system and a gas of
bosons has been very fruitful for describing field-induced
ordered phases in a large class of quantum paramagnets
[1–4]. In this analogy, a magnetic field H plays the role of
the chemical potential, which, upon reaching a critical
value Hc1, induces a T ¼ 0 Bose-Einstein condensation
(BEC), provided that the number of bosons is conserved,
the kinetic energy is dominant, and the spatial dimension
d > 1. Such a BEC state corresponds to a canted XY
magnetic ordering of the spins.

At the BEC quantum critical point (QCP), the low-
energy bosonic excitations have a quadratic dispersion
! ¼ k2=2m�, where m� is the effective mass. This mass
is renormalized by quantum fluctuations in the paramag-
netic phase H � Hc1. In magnets with Hc1 � Hc2 the
renormalization can be expected to be very strong because
of the proximity to the magnetic instability. The transition
atHc1 should be contrasted with the second BEC-QCP that
takes place at the saturation field Hc2 [5]. Since the field-
induced magnetization is a conserved quantity, there are no
quantum fluctuations and no mass renormalization for the
fully polarized phase above Hc2; i.e., the bare mass m can
be obtained from the single-particle excitation spectrum at
H � Hc2. Thus, quantum paramagnets are ideal for study-
ing mass renormalization effects because the effective and
the bare bosonic masses can be obtained from two different
QCPs that occur in the same material.

Here we present theoretical and experimental
evidence for a strong mass renormalization effect,
m=m� ’ 3, in NiCl2-4SCðNH2Þ2 [referred to as

dichlorotetrakisthiourea-nickel (DTN)]. We will show
that the large asymmetry between the peaks in the low-
temperature specific heat, CvðHÞ, in the vicinity ofHc1 and
Hc2 is closely described by analytical and quantum
Monte Carlo (QMC) calculations. The mass renormaliza-
tion also explains similar asymmetries observed in other
properties of DTN, such as magnetization [6], electron spin
resonance [7], sound velocity [8,9], and magnetostriction
[10]. In a remarkable contrast to these properties, peaks in
the low-temperature thermal conductivity, �, near Hc1 and
Hc2 do not show any substantial asymmetry. We provide an
explanation to this dichotomy by demonstrating that the
leading boson-impurity scattering amplitude is also renor-
malized by quantum fluctuations, effectively canceling the
mass renormalization effect in �.
DTN is a quantum magnet with tetragonal crystal sym-

metry that exhibits a field-induced BEC [6,7,11–13] to a
very good approximation [14]. The dominant single-ion
uniaxial anisotropy D ¼ 8:9 K splits the Ni S ¼ 1 triplet
into an Sz ¼ 0 ground state and an Sz ¼ �1 excited dou-
blet. The antiferromagnetic exchange coupling between Ni
ions is Jc ¼ 2:2 K along the c axis and Ja ¼ 0:18 K along
the a and b axes, while the gyromagnetic factor along the c
axis is g ¼ 2:26 [7]. A magnetic field applied along the c
axis lowers the energy of the Sz ¼ 1 state producing a
T ¼ 0 BEC transition at Hc1 ¼ 2:1 T. The long-range
order occurs in a dome-shaped region of the T-H phase
diagram between Hc1 and Hc2 ¼ 12:5 T and below
the maximum ordering temperature Tmax ’ 1:2 K [11].

The T3=2 dependence of the critical field expected for a
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BEC-QCP has been established via direct measurements of
the phase boundary with ac susceptibility down to 1 mK
[13], and by magnetization measurements [15]. The asym-
metry between Hc1 and Hc2 [6–11] can also be seen
directly in the skewed shape of the phase diagram [11].

The Hamiltonian describing the S ¼ 1 spin degrees of
freedom of DTN in external field is given by [7]

H ¼ X
r;�

J�Sr � Srþe� þD
X
r

ðSzrÞ2 � h
X
r

Szr; (1)

where e� are the primitive vectors of the lattice, � ¼
fa; b; cg, and h ¼ g�BH. We introduce Schwinger bosons
associated with the fundamental representation of SU(3)

that obey the constraint
P

mb
y
rmbrm ¼ 1. The subscript

m ¼ f#; 0; "g labels the eigenstates of Szr with the eigenval-
ues f�1; 0; 1g. The spin operators in this representation are
Szr ¼ nr" � nr#; Sþr ¼ ðS�r Þy ¼ ffiffiffi

2
p ðbyr"br0 þ byr0br#Þ; (2)

with nrm ¼ byrmbrm. We enforce the constraint by introduc-
ing spatially uniform Lagrange multiplier �

Ĥ ¼ H þ�
X
r

ðbyr"byr" þ byr#b
y
r# þ byr0b

y
r0 � 1Þ: (3)

The lowest energy state in the H <Hc1 paramagnetic

regime is byr0j0i and the ground state corresponds to a

nonzero expectation value of the Sz ¼ 0 boson: byr0 ¼
br0 ¼ s. By using the spin representation (2) with the

mean-field value for bðyÞ0 and neglecting higher-order terms

in powers of bðyÞ"ð#Þ, we obtain the Hamiltonian in the har-

monic approximation, Ĥ ¼ E0 þ �Ĥ :

�Ĥ ¼ X
k;�

�
Ak�b̂

y
k�b̂k� þ Bk

2
ðb̂yk�b̂y�k �� þ H:c:Þ

�
; (4)

with Ak� ¼ ð�þ s2�k � h�Þ and Bk ¼ s2�k, where
E0 ¼ Nð��DÞðs2 � 1Þ is the bare ground-state energy,
N is the number of sites, � ¼ f"; #g, h� ¼ �h, �� ¼ ��,

b̂ðyÞk� are the Fourier transformed bosonic operators, and
�k ¼ 2

P
�J� cosk�. The anomalous terms indicate that

bosons with opposite Sz are created and annihilated in
the ground state. These are the quantum fluctuations that
lead to renormalization of the quasiparticle dispersion
relation. The Hamiltonian (4) is diagonalized by

b̂ k� ¼ uk�k� þ vk�
y
�k ��; (5)

where ukvk ¼ Bk=2!
0
k, u

2
k þ v2

k ¼ ð�þ s2�kÞ=!0
k, and

!0
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 2�s2�k
p

. The resultant form of Ĥ is

Ĥ ¼ ~E0þ
X
k

½ð!0
k�hÞ�y

k"�k" þð!0
kþhÞ�y

k#�k#�: (6)

Thus, the low-energy spectrum for h < hc1 is ~!<
k 	 !0

k �
h. The band ~!<

k has a minimum at the antiferromagnetic
wave vector Q ¼ ð�;�;�Þ with the gap �< ¼ !0

Q � h,

whose vanishing point defines the critical field hc1 ¼
g�BHc1 ¼ !0

Q. The ground state energy is also affected

by quantum fluctuations

~E 0 ¼ E0 þ
X
k

ð!0
k ��� s2�kÞ: (7)

The saddle point conditions, @ ~E0=@s ¼ @ ~E0=@� ¼ 0, lead
to the self-consistent equations for the parameters s and�,

s2 ¼ 2� 1

N

X
k

�þ s2�k
!0

k

; D ¼ �þ�

N

X
k

�k
!0

k

: (8)

Using parameters for DTN given in Ref. [7], the resulting
values are s2 ¼ 0:92 and � ¼ 10:3 K.
This low-energy theory is valid only for H � Hc1. For

H � Hc2 spins are fully polarized and the spectrum can be
computed exactly. Since there are no quantum fluctuations
for H � Hc2, the exact value of hc2 is hc2 ¼ g�BHc2 ¼
D� 2�Q, while the unrenormalized excitation spectrum is

~!>
k 	 �k � �Q þ h� hc2, which also has a minimum at

Q with the gap �> ¼ h� hc2. Since only the excitations
near k ¼ Q are important at low temperatures, we define
the mass tensors for H <Hc1 and H >Hc2 as

1

m�
��

¼ @2 ~!<
k

@k2�

��������k¼Q
;

1

m��

¼ @2 ~!>
k

@k2�

��������k¼Q
: (9)

Then the mass renormalization factor is given by

m��

m�
��

¼ s2
�

!0
Q


 Hc2

4Hc1

�
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8H2

c1

H2
c2

s �
: (10)

For the parameters from Ref. [7], we obtain m��=m
�
�� ’

3:2. Such a large difference of masses must readily dem-
onstrate itself in the strong asymmetry of the Cv vs H
curves near Hc1 and Hc2 as well as in the slopes of the
specific heat dependence on T at the critical fields where

Cv / ðTmÞ3=2. These theoretical expectations are sup-
ported by the experimental CvðT;HÞ data shown in
Figs. 1 and 2.
The Cp was measured in single crystals of DTN grown

from aqueous solutions of thiourea and nickel chloride,
with magnetic field applied along the crystalline c axis.
The experimental Cp vs H was obtained using an ac

technique [16], while sweeping the magnetic field in a
3He fridge furbished with a 17 T superconducting magnet
system at the National High Magnetic Field Laboratory
and the Los Alamos National Laboratory. We also used the
standard thermal relaxation method to obtain Cv vs T with
a dilution refrigerator in a 16 T Physical Properties
Measurement System at Quantum Design, Inc. A strongly
asymmetric Cp vs H is shown in Fig. 1 for fixed tempera-

tures T ¼ 0:75 K (green line) and T ¼ 0:4 K (red line),
alongside the results of the QMC simulations of the spin
Hamiltonian in Eq. (1) in a 8� 8� 32 lattice (solid sym-
bols). The agreement between the QMC results and the
experimental data is very good. For the lowest temperature,
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the asymmetry of the peaks is Cp2=Cp1 ’ 6, close to

ðm=m�Þ3=2 
 5:7 expected from the theory above.
Our Cv vs T experimental data close to Hc1 (top panel)

and Hc2 (bottom panel) are displayed in Fig. 2 (lines with
symbols). The results of the QMC simulations of Eq. (1) at
Hc1 and Hc2 are shown by the solid lines. The dashed lines
correspond to the analytical calculation of CvðTÞ for a
dilute gas of hardcore bosons [Eq. (6)] that have the spectra
given by ~!<

k and ~!>
k at Hc1 and Hc2. The on-site boson-

boson repulsion is taken into account at the mean-field
level by summing the ladder diagrams (see Ref. [3]).
Since this approach is only valid for low density of bosons,

it agrees closely with the QMC results at low T, but
deviates from them at higher temperatures. The very
good agreement between the theoretical results and the
experimental curves atHc1 andHc2 confirms quantitatively
the expected mass renormalization for H � Hc1.
The thermal conductivity was measured in DTN single

crystals using the standard uniaxial heat flow method,
where the temperature difference was produced by a heater
attached to one end of the sample and monitored with a
matched pair of RuO2 thermometers. The heat flow and the
magnetic field were parallel to the c axis. Similar obser-
vations were reported in Ref. [17] although their data at
base temperature (380 mK) do not agree with ours, mea-
sured down to 300 mK.
The lighter mass of bosons forH � Hc1 implies not only

large asymmetry between the peaks in the specific heat
field dependence, but also similar asymmetries in a number
of other properties of DTN [6–10], all exhibiting a much
stronger anomaly at Hc2 than at Hc1. In contrast, the low-
temperature thermal conductivity does not show any sub-
stantial asymmetry between theHc1 andHc2 data. Figure 3
shows the field dependence of the thermal conductivity, �,
normalized to theH ¼ 0 value, �ð0Þ, for several low values
of T. Since the H ¼ 0 magnetic excitation spectrum has a
gap of about 3 K [7], only phonons contribute to �ð0Þ at
low temperatures. The behavior of � changes qualitatively
in the field because the gap is closed between Hc1 andHc2.
The low-temperature magnetic excitations provide a sub-
stantial contribution to the thermal conductivity as is clear
from �ðHÞ=�ð0Þ being >1 in Fig. 3. Here we focus on the
low-temperature behavior of � at the critical points Hc1

and Hc2. A detailed analysis of the other aspects of � will
be provided elsewhere [18].
At low enough temperatures, scattering of bosons on

each other should diminish and the leading scattering in
this regime should be due to defects. In the second Born
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FIG. 2 (color). Specific heat data as a function of T for
magnetic fields near (a) Hc1 and (b) Hc2. A Schottky anomaly
tail, A=T2 with A ¼ 0:018 J=molK3, has been subtracted for
fields near Hc2. The full lines correspond to QMC simulations of
Eq. (1) for H ¼ Hc1ð2Þ and the parameters of Ref. [7]. The

dashed lines are analytical calculations.

FIG. 1 (color). Specific heat as a function of magnetic field for
two temperatures. Measurements and QMC simulations were
also performed at other temperatures showing nearly perfect
agreement and the same characteristic behavior of Cp vs H.
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FIG. 3 (color). Thermal conductivity of DTN along the c axis
as a function of H for three different temperatures. Inset:
Theoretical prediction for the peak ratios �2=�1 and Cv2=Cv1

vs Hc1=Hc2.
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approximation, the disorder-averaged inverse mean-free
path of an excitation of mass m due to scattering on point-
like impurities is [19]

‘�1 ¼ ni
2�

jVj2m2; (11)

where ni is the impurity concentration andV is the effective
impurity potential. When the excitation gap vanishes atHc1

or Hc2, thermal conductivity at low T can be written as

� / ‘

m

Z ffiffiffiffiffi
mT

p

0
k3dk / mT2‘ / T2

nimjVj2 : (12)

The theoretical temperature dependence, � / T2, is in a
good agreement with the measured low T thermal conduc-
tivity. However, this does not shed any light on the lack of
asymmetry between the peaks. Since vacancies or substitu-
tional impurities are expected to be rare in clean systems
like DTN, we can assume that random lattice distortions are
the most common source of disorder. Because D is the
largest parameter in Eq. (1), the most significant effect of
these distortions is a real space modulation of D

H D
imp ¼ �DðSzi Þ2 ) �D

X
�;k;k0

eiRiðk�k0Þbyk�bk0�; (13)

where i is the impurity site and we used the mapping (2).
This is where the renormalization due to quantum fluc-

tuations becomes crucial again. For H ¼ Hc2 the impurity
scattering in (13) is not renormalized and V2 	 �D. On the
other hand, for H ¼ Hc1 the scattering is affected by the
quantum fluctuations. Since the dressed bosonic excita-
tions are related to the bare ones through Eq. (5), this
transforms impurity scattering (13) into [Ri ¼ 0]

H D
imp ¼ �D

X
�;k;k0

ðukuk0 þ vkvk0 Þ�y
k��k0�: (14)

Thus, the impurity potential at Hc1 is V1 ¼ �Dðu2Q þ v2
QÞ,

which will modify the mean-free path in (11). After some
algebra utilizing Eqs. (12), (5), and (10), we finally obtain

�2

�1
¼ m‘2

m�‘1
¼

�
m

m�

�
1

4s4

�
1þ s4

�
m�

m

�
2
�
2
: (15)

This expression contains a large prefactor (m=m�) coming
from the renormalization of the density of states and veloc-
ity in (12), and would formally imply a larger peak at Hc2,
similar to the specific heat and other quantities. However,
this effect is partially compensated by the numerical factor

 1=4þOððm�=mÞ2Þ, which comes from the renormaliza-
tion of the mean-free path. By using the DTN parameters,
we obtain �2=�1 
 1:1 in an excellent agreement with the
data in Fig. 3. Thus, the mass renormalization effect in
thermal conductivity is compensated by a similar renormal-
ization effect in the impurity scattering. To show that this is
not a mere coincidence, we provide our prediction for the
Hc1=Hc2 dependence of the peak ratios in thermal conduc-
tivity �2=�1 and specific heat Cv2=Cv1 on Hc1=Hc2

[see inset in Fig. 3]. Here we used the relation between

the mass ratio and Hc1=Hc2 given by Eq. (10). The vertical
line corresponds to the DTN value ofHc1=Hc2 
 0:17. It is
remarkable that �2=�1 and Cv2=Cv1 behave in very differ-
ent ways. In particular,�2=�1 
 1while the peaks inCv are
very asymmetric for 0:1 & Hc1=Hc2 � 1. With this insight,
we also suggest an experimental verification of our theory
by conducting the heat conductivity measurement in DTN
under pressure.Amodest decrease ofHc1 by 1T should lead
to an increase in �2=�1 by a factor of 2.
The leading impurity scattering (13) and the resulting

expression for the ratio �2=�1 in (15) will remain valid for
the other BEC magnets even though they may not be
dominated by the single-ion anisotropy term. For instance,
in the dimer-based systems [4], the disorder in the leading
intradimer coupling translates into the local modulation of
the chemical potential which is equivalent to our Eq. (13).
Thus, our Eq. (15) can be verified in other BEC
compounds.
In conclusion, by using the example of DTN, we con-

nected the asymmetry in the physical properties of BEC
magnets with the mass renormalization of the elementary
excitations due to quantum fluctuations of the paramag-
netic state. We also resolved the enigmatic absence of this
asymmetry in the low-T thermal conductivity by identify-
ing the leading scattering mechanism and by demonstrat-
ing that the renormalization of the latter compensates the
mass renormalization effect.
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