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In type-II superconductors that contain a lattice of magnetic moments, vortices polarize the magnetic

system inducing additional contributions to the vortex mass, vortex viscosity, and vortex-vortex interac-

tion. Extra magnetic viscosity is caused by radiation of spin waves by a moving vortex. Like in the case of

Cherenkov radiation, this effect has a characteristic threshold behavior and the resulting vortex viscosity

may be comparable to the well-known Bardeen-Stephen contribution. The threshold behavior leads to an

anomaly in the current-voltage characteristics, and a drop in dissipation for a current interval that is

determined by the magnetic excitation spectrum.

DOI: 10.1103/PhysRevLett.106.037001 PACS numbers: 74.25.Uv, 74.25.F�, 74.25.Ha, 74.25.N�

Magnetic ordering coexists with superconductivity in
many different compounds that are known as magnetic
superconductors. For instance, the RNi2B2C borocarbides
[1] or BaðFe1�xCoxÞ2As2 (pnictides) [2], are superconduc-
tors that comprise a lattice of magnetic moments in their
structure. Coexistence of magnetism and superconductiv-
ity is also realized in hybrid systems that are specifically
designed for this purpose [3]. A lot of work is being
devoted to understanding the interaction between vortices
and magnetic domain walls [4], with the main goal of
enhancing vortex pinning. However, much less is known
about the effect of the magnetic degrees of freedom in the
dynamic regimes of flux creep and flux flow.

Vortices are topological defects of the superconducting
order parameter that emerge in type-II superconductors
under the application of a strong enough magnetic field.
In magnetic superconductors, the magnetic moments
couple to the magnetic field of the vortex via Zeeman
interaction. Therefore, vortex motion in a magnetic super-
conductor is accompanied by a dynamic readjustment of
the magnetic moments. Since the low-energy excitations of
a magnetically ordered system are spin waves or magnons,
a moving vortex can emit magnons under certain condi-
tions. This emission, in turn, affects the vortex motion.

In this Letter we demonstrate that the interaction be-
tween vortices and magnetic moments of a type-II mag-
netic superconductor leads to a contribution to the vortex
mass, vortex viscosity, and vortex-vortex interaction. We
show that a moving vortex can transfer energy to the
magnetic moments by emitting spin waves. This energy
transfer gives rise to a ‘‘magnetic viscosity.’’ The inertial
part of the response of the magnetic system modifies the
dependence of the vortex energy on its velocity. Thus, it
generates a magnetic contribution to the vortex mass. The
viscosity of this ‘‘magnetically dressed’’ vortex may also
differ significantly from the ‘‘bare’’ vortex value. The spin
waves have a well defined dispersion relation �ðkÞ.

Similar to the physics of Cherenkov radiation of photons
by a moving electron, a superconducting vortex moving
with velocity v radiates spin waves with momentum k
when the kinematic condition �ðkÞ ¼ v � k is satisfied.
As a consequence, the magnetic viscosity of a vortex in an
antiferromagnet (or a ferromagnet with easy-axis perpen-
dicular to the applied magnetic field) has a threshold
behavior in the vortex velocity; i.e., it is effective only if
v exceeds a critical velocity vc.
The radiation of photons in the classical Cherenkov

problem takes place when a charged particle moves faster
than the speed of light in a dielectric medium. In a mag-
netic superconductor, the threshold velocity vc depends on
the spin-waves velocity, the size of the vortex core, and the
gap of the spin-wave excitation spectrum. The threshold
behavior of the magnetic viscosity, �mðvÞ, can be observed
experimentally as an anomaly in the I-V characteristics of
the flux flow regime, near the voltage that corresponds to
the threshold velocity vc. An important result is that
�mðv > vcÞ may be comparable in magnitude to the
Bardeen-Stephen (BS) core viscosity, �c, which is induced
by excitations of the quasiparticles in the vortex core [5].
Here we only consider temperatures that are well below the
magnetic transition temperature TN .
The physics of the magnetic mass is analogous to the

polaron problem [6]. The inertia of the magnetic moments
adds up to the vortex inertia. In this Letter we are mainly
concerned with the vortex flow regime for which the effects
of the vortex mass are not important [7].
1. Spin-vortex interaction in a magnetic superconduc-

tor.—The magnetic field of a vortex j, oriented along the z
axis and located at the spatial coordinate Rj in the xy

plane, has the form ẑHz
vðr�RjÞ, where ẑ is the unit vector

along the z axis. The Fourier components of Hz
vðrÞ are

Hz
vk ¼ �0=ð1þ �2k2Þ, where � is the London penetration

length and �0 is the flux quantum. In a quasistatic
approach (v much smaller than the Fermi velocity), the
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vortex moving along the trajectory RjðtÞ induces a time-

dependent magnetic field Hz
v½r�RjðtÞ� that acts on the

magnetic subsystem. Application of a uniform magnetic
field induces a uniform internal field H0 ¼ ẑH0 that cre-
ates a vortex lattice. The magnetic field inside the super-
conductor, H ¼ ẑHzðrÞ, has the periodicity of the vortex
lattice. (In an isotropic superconductor, the vortices are
oriented along the direction of the internal magnetic field.)
A moving vortex lattice creates a time-dependent magnetic
field HðrÞ ¼ ẑ

P
j H

z
v½r�RjðtÞ�. For a dense vortex lat-

tice, H0 � �0=�
2, the periodic component of the mag-

netic field is small compared to the uniform component,
hzðrÞ ¼ HzðrÞ �H0 � H0.

The Zeeman term is:

Hint ¼ �X
nj

�hz½rn �RjðtÞ�SznðtÞ; (1)

where rn are the coordinates of the spins described by the
operators Sn and � ¼ g�B (g is the gyromagnetic factor
and �B is the Bohr magneton). We describe spins quantum
mechanically, while the vortices are treated as classical
objects. The vortex-spin interaction given by Eq. (1) leads
to the following equations of motion for spins and vortices

i@ _Sn ¼ ½Sn; HM� �
P

j�hzðrn �RjÞ½Sn; S
z
n� � i@�Sn,

�c
_Rj ¼ � 1

Lz

X
n

�
@hz½rn �RjðtÞ�

@rn
hSzni þ FL þ Fp

þX
j0
FvðRjRj0 Þ; (2)

where ½A;B� ¼ AB� BA, Lz is the system length along
the z axis, � is the spin relaxation rate due to coupling of
spins with other degrees of freedom. FL and Fp are the

Lorentz and pinning forces respectively, FvðRj;Rj0 Þ is the
nonmagnetic force acting on vortex j due to the presence of
other vortices located at Rj0 . These forces are defined per

unit of vortex length. h� � �i indicates the quantum mechani-
cal average. The magnetic system is described by the
Hamiltonian, HM, which is specified below and accounts
for exchange coupling between spins, anisotropy, and
Zeeman coupling to H0.

The first term in the right-hand side of Eq. (2) describes
the interaction of a given vortex with other vortices due to
polarization of the spin system. When vortices are at rest,
this termmay lead to a change in the vortex lattice structure
depending on the characteristics of the magnetic subsystem
and on the applied magnetic field. For dynamical proper-
ties, this term leads to additional dissipation due to energy
transfer to spin excitations, vortex mass renormalization
caused by the inertia of the spins, and change of the moving
vortex structure. In the following we only consider dy-
namical effects of the perfect square vortex lattice,RjðtÞ ¼
R0

j þ vt, with reciprocal lattice vectors G ¼ ð2�=bÞ�
ðmx;myÞ, where mx;y are integers, nv ¼ 1=b2 is the vortex

density, and b it the vortex lattice parameter. We assume
that spins are close to equilibrium, i.e., that � is strong

enough in comparison with the rate of spin excitations. The
periodic component of the magnetic field hzðr; tÞ is weak in
comparison with H0. Thus we use the linear response
approximation with respect to hzðr; tÞ in order to find the
Fourier components hSzkð!Þi. We note that only nonzero

spatial harmonics,G � 0, contribute to the coupling of the
moving vortex lattice to the magnetic subsystem.
The spatial Fourier components of hzðr; tÞ at the initial
time t ¼ 0 are hzGð0Þ ¼ �0nv=½1þ �2G2�. We obtain:

�hSzGðtÞi ¼
a

nv
hzGð0Þ

Z t

0
dt0�zzðG; t� t0Þe�iG�vt0 ; (3)

SzkðtÞ ¼
a

Lz

X
n

eik�rnSznðtÞ: (4)

Here a is the lattice parameter of the magnetic ions and
�zzðG; tÞ is the longitudinal differential susceptibility of
the spin system with respect to the alternating field hzGðtÞ.
By expressing hSzð!Þi in Eq. (2) via Eq. (3), we obtain the
equation of motion for the vortex lattice:

�c
_R ¼ �i

nv

X
G

jhzGð0Þj2GeiG�RðtÞ

�
Z t

0
dt0�zzðG; t� t0Þe�iG�vt0 þ FL; (5)

where R is the center of mass coordinate of the vortex
lattice. Here we neglected the pinning force. When the
vortex lattice moves with constant velocity v, we obtain
from Eq. (5): �cvþ Fm ¼ FL and

F m ¼ � v

nvv
2

X
G

jhzGð0Þj2G � vIm½�zzðG; ! ¼ G � vÞ�:

(6)

Here we introduced the magnetic viscous force Fm (per
unit of vortex length). So far the discussion is general and
valid for any magnetic superconductor.
Magnetic viscous force for an antiferromagnet.—We

now consider the simple case of a two-sublattice antiferro-
magnet with an easy-axis anisotropy along the x direction.
Thus, we introduce the following magnetic Hamiltonian
for spin S moments:

HM ¼ J
X
hl;ni

Sl � Sn þ JA
X
hl;ni

Sxl S
x
n ��H0

X
n

Szn; (7)

that is defined on a bipartite lattice with coordination
number Z. Here hl; ni indicates that l and n are nearest-
neighbor lattice sites, J is the exchange constant between
nearest neighbors, and JA > 0 is the amplitude of the
exchange anisotropy term. This model is a good starting
point for describing magnetic superconductors that have a
Neel temperature, TN , lower than the superconducting
critical temperature Tc. While the exchange term stabilizes
a two-sublattice antiferromagnetic ordering along the x
direction (easy axis), H0 induces a uniform component
along the z axis. This canted antiferromagnetic phase
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persists at T � TN until the field reaches the saturation
value Hs; i.e., the staggered magnetization component

�hSxni ¼ ��S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2

0=H
2
s

q
vanishes for H0 � Hs (differ-

ent signs correspond to different sublattices).
We will compute the longitudinal susceptibility,

�zzðk; !Þ, in the spin-wave approximation. Since the natu-
ral upper cutoff for the momenta of the vortex lattice field
is 1=� � 1=a, we compute �zzðk; !Þ in the long wave-
length limit. The result is �zzðk; !Þ ¼ 0 for H � Hs and

�zzð!;k;H0Þ ¼ �2
1 þ s21k

2

�2
k � ð!þ i�Þ2 (8)

for H0 	 Hs. The saturation field is Hs ¼ ð�=a3ÞS=�0,
where �0 ¼ �zzð! ¼ 0; k ¼ 0Þ is the static susceptibility.

Here �1 ¼ ð�=@a3=2ÞS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JAZð1�H2

0=H
2
s Þ

q
and s1 ¼

ð�=@a1=2ÞS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð1�H2

0=H
2
s Þ

q
. The dispersion �k of the

spin-wave excitations that couple to the vortex field is

�k 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þ s20k
2

q
; �0 ¼ ZS

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2

0

H2
s

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JAð2J þ JAÞ

q
;

s0 ¼ a

@

ffiffiffiffi
Z

p
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J � JA

p �
JA
2
þ

�
1�H2

0

H2
s

��
J þ JA

2

��
1=2

:

(9)

Here �0 and s0 are the spin-wave gap and velocity. For
H0 >Hs, the staggered magnetization is zero and the
radiation of spin waves vanishes at low temperatures
because the magnetic field cannot change the already
saturated amplitude of the uniform magnetization.

By inserting Eq. (8) into Eq. (6), we obtain:

F m ¼ � v

2nvv
2

X
G

jhzGð0Þj2
G � v�ð�2

1 þ s21G
2Þ

�G½ðG � v��GÞ2 þ �2� :

(10)

To proceed, we replace the sum over G by an integral by
assuming that �=s0 � 2�=b, i.e., that the integrand varies
over a length scale much longer than 2�=b. When � �
k�v, with k� ¼ �0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � s20

q
, the Lorentzian can be

replaced by a delta function, Im½�zzðk; ! ¼ k � vÞ� ’
ð�2

1 þ s21k
2Þ�ð�k � k � vÞ=�k. In this form the kinematic

condition of the radiation is explicit. As we mentioned
above, linear response is applicable when spin relaxation
is fast compared to the rate at which magnons are created
by the vortex lattice. We can now specify this condition

explicitly: � � a3=2�1�0=ð2�
ffiffiffiffiffiffiffi
�0

p
�Þ2. By performing

the angular integration, k � v ¼ kv cos�, we obtain the
magnetic viscous force per unit of vortex length for v > s0:

FmðvÞ ¼ �

v

�
�0

�2

�
2 Z ð2�=�Þ

0

kdk

ð2�Þ2
�2

1 þ s21k
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2k2 ��2
k

q

� 	ðk� k�Þ
½k2 þ ��2�2 ; (11)

where 	ðxÞ ¼ 1 if x > 0 and zero otherwise. Unlike the
Cherenkov electron, which is a pointlike object and gen-
erates a field with arbitrary high wave vector, the vortex has
a finite core size and its spatial Fourier components are
exponentially suppressed for k * 2�=�. This determines
the upper integration limit in Eq. (11).
Wewill now analyze this equation forFmðvÞ in the range:

2�s0
b

;
a3=2�1ffiffiffiffiffiffiffi

�0

p
�

�0

ð2��Þ2
�
� � � 2�s0

�
: (12)

As the vortex velocity increases, the value of k�ðvÞ starts at
k�ðs0Þ ¼ 1, for v ¼ s0, and decreases monotonically for
v > s0. Depending on the value of k�ðvÞ relative to the
upper integration limits, Eq. (11) has two different regimes:
(i) k� is above the upper integration limit, k� > 2�=�. The

magnetic viscous force vanishes, Fm ¼ 0, for v < vc ¼
½s2 þ ð��0=2�Þ2�1=2. (ii) For k� < 2�=� the integration
in Eq. (11) has the limits k� < k< 2�=�.
At v ¼ vc the dissipation function has a threshold behavior
Fm / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v� vc
p

. Note that the threshold is sharp because

� � 2�s0=�. As the velocity increases beyond ½v2
c þ

ð��0=2�Þ2�1=2, but remains small enough to ensure
k�ðvÞ � 2�=b, the viscous force has an approximately
linear dependence on the vortex velocity and we can define
a magnetic viscosity via

FmðvÞ ¼ �m

v
ðv2 � s20 þ 2s21=�0Þ;

�m ¼ �0

16

�
�0

�2

�
2 1

�0

: (13)

Figure 1 shows the dependence of the magnetic viscous
force Fm on the vortex velocity. As H0 approaches Hs, the
amplitude of the periodic part of the magnetic field
decreases and the value of Fm eventually vanishes.
As temperature increases and approaches TN , the spin-

wave relaxation rate � increases. The dynamics becomes
relaxational near the magnetic transition. In this regime,
the magnetic viscosity does not exhibit a threshold behav-
ior in the vortex velocity.
3. Experimental signatures.—We can estimate the mag-

nitude of the magnetic viscosity by evaluating Eq. (13).
For typical values of the relevant parameters, �� 10�B,
Tc’10K, Hc2�10T, 
n�100��cm, ��200 cm,
s�50m=s and �0¼2K, we obtain �m�10�7 g=ðcm �
secÞ. This value is comparable to the BS core viscosity
[5] �c¼ðHc2�0�nÞ=c2�10�7 g=ðcm �secÞ. Clearly, the
magnetic contribution to the vortex viscosity is more
important for nearly isotropic magnetic materials
(small gap �0) such as superconducting compounds or
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heterostructures whose magnetic moments are provided by
transition metal ions.

We will now discuss the current-voltage characteristics.
The electric current exerts a Lorentz force, FL ¼ ð�0=cÞI,
on the vortex. The voltage V is proportional to the velocity
of the vortex flow via the Josephson relation V ¼ ð@=2eÞ�
ðv=bÞ. The vortex velocity is determined from the balance
between the Lorentz force, FL, and the viscous force given
by Eq. (6). As the current exceeds the value Ion at which the
vortex velocity (determined by the Bardeen-Stephen vis-
cosity only) equals to the onset velocity, vc, the character
of the I-V curve changes. Right above vc (onset of
region II), the magnetic contribution to the vortex viscosity
is nonzero and increases fast, Fm / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v� vc
p

.

Consequently, v is weakly dependent on I near the thresh-
old, V � Vc / ðI � IonÞ2 where Vc ¼ ð@=2eÞðvc=bÞ. Once
the current is large enough to propel the vortex to a larger
speed where magnetic viscosity saturates to a constant
value, the linear behavior, V / I, is recovered. The slope
of the linear behavior of V vs I in region II is smaller
compared with region I because the total viscosity is larger.

It is important to determine if the critical vortex velocity
vc, necessary to reach the onset of magnetic dissipation, is
experimentally attainable. The limiting factors are heating
and the Larkin-Ovchinnikov instability of the vortex flow
at high velocities [8,9]. A current density of�50 KA=cm2

is needed to reach vortex velocities close to the spin-wave

velocity, s� 50 m=s. If heating is the limiting factor, such
currents can be reached with pulsed measurements. In
addition, s decreases for increasing magnetic field and
temperature. It is hard to get a reliable esti-
mate of the critical velocity for the Larkin-Ovchinnikov

instability, which is given approximately by v� 

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�el=�in

p
(vF is the Fermi velocity and �el;in are the

elastic and inelastic scattering times, respectively).
Measurements of yttrium barium copper oxide (YBCO)
films yield v� � 1000 m=s [9].
In conclusion, moving vortices radiate spin waves in

superconducting antiferromagnets for v > vc. This effect
decreases the flux flow resistance; i.e., it reduces energy
dissipation. The onset of magnetic viscosity appears in the
I-V characteristic curve as a local deviation at the threshold
voltage that is determined by a vortex velocity vc. For
materials with TN < Tc, we predict a drop in the resistance
as temperature drops below TN . The same effect can be
observed in hybrid structures made of alternating super-
conducting and magnetic layers for a magnetic field per-
pendicular to the layers. The magnetic layers can be
antiferromagnetic or ferromagnetic with easy axis parallel
to the layers.
We thank Leonardo Civale and Boris Maiorov for dis-

cussion of experimental details. Research supported by the
U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering.

[1] P. C. Canfield, P. L. Gammel, and D. J. Bishop, Phys.

Today 51, No. 10, 40 (1998).
[2] J-H. Chu et al., Phys. Rev. B 79, 014506 (2009).
[3] A. Buzdim, Nature Mater. 3, 751 (2004).
[4] D. B. Jan, J. Y. Coulter, B. B. Maranville, M. E. Hawley,

L. N. Bulaevskii, M. P. Maley, F. Hellman, X.Q. Pan, and
Q.X. Jia, Appl. Phys. Lett. 82, 778 (2003); L. N.

Bulaevskii, E.M. Chudnovsy, and M. P. Maley, Appl.
Phys. Lett. 76, 2594 (2000).

[5] J. Bardeen and M. Stephen, Phys. Rev. 140, A1197 (1965).
[6] R. P. Feynman, Statistical Mechanics (Benjamin, Reading,

Mass., 1972).
[7] D. J. Thouless and J. R. Anglin, Phys. Rev. Lett. 99,

105301 (2007).
[8] A. I. Larkin and Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz.

68, 1915 (1975) [Sov. Phys. JETP 41, 960 (1976)]; A.

Schmid and W. Hauger, J. Low Temp. Phys. 11, 667
(1973).

[9] S. G. Doettinger, R. P. Huebener, R. Gerdemann, A. Kühle,

S. Anders, T. G. Trauble, and J. C. Villegier Phys. Rev.
Lett. 73, 1691 (1994).

I II

(b)

I

V

Vc

Ion

(a)

v/s0

BS

+MBS

F (v)

vc/s

BS

+MBS

0
2 4 6

FIG. 1 (color online). (a) Total viscous force in arbitrary units
as a function of v=s0, as given by Eq. (11). The blue dashed line
represents the effect of Bardeen-Stephen viscosity due to vortex
core alone. (b) Effect of the magnetic viscous force on the I-V
characteristics. Magnetic viscous force results in a voltage drop
relative to the BS result for currents above Ion corresponding to
the vortex velocity vc.
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