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Time-resolved small angle neutron scattering was used to probe the initial stages of liquid-liquid phase

separation in both critical and off-critical binary polymer blends, and the critical (qc) and most probable

(qm) wave vectors were identified for several quench depths. For the critical blend, the Cahn-Hilliard-

Cook theory provides a framework for analyzing the data and explains the observed decrease in qm with

time. For the off-critical blend, qm is independent of quench time, regardless of whether the quench is

metastable or unstable.
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The standard phase diagram of binary liquid mixtures
contains two curves: the binodal curve, which is the locus
of the compositions of the coexisting phases, and the
spinodal curve, which is the thermodynamic limit of the
stability of the homogeneous phase. According to classical
treatments, the transformation of a homogeneous binary
liquid into a phase-separated mixture after a quench from
the single-phase region of the phase diagram to the two-
phase region occurs by two mechanisms: nucleation and
growth, which occurs if the quench lies between the bino-
dal and the spinodal curves (the metastable region), and
spinodal decomposition if the quench lies within the spi-
nodal curve (the unstable region) [1–3]. However, subse-
quent theoretical treatments that have examined the
crossover from nucleation to spinodal decomposition sug-
gest that the situation may be more complex [4,5].

In this Letter, we present time-resolved small angle
neutron scattering (SANS) data from two polymer blends
that are quenched from the one-phase to the two-phase
region: a critical blend that is quenched directly into the
unstable region and an off-critical blend quenched to vari-
ous quench depths, in both the metastable and the unstable
regions. The data were obtained during the initial stages of
phase separation, before coarsening sets in. SANS results
from both the blends have been presented in two separate
papers [6,7]. The main purpose of this Letter is to combine
the data presented in these two papers to illustrate that
(i) for the off-critical blend, there are no qualitative differ-
ences between quenches in the metastable and unstable
regions, and (ii) quenches for the critical and off-critical
blends display differences in the time evolution of the most
probable wave vector. This raises questions concerning the
role of the spinodal in demarcating distinct phase separa-
tion mechanisms.

Both polymer blends are made up of high molecular
weight liquid polyolefins: deuterated polymethylbutylene
(dPMB) and hydrogenous polyethylbutylene (hPEB). The

methods used to synthesize and characterize these nearly
monodisperse homopolymers are described in Ref. [8].
Theweight-average molecular weightsMw of the polymers
that constitute the off-critical blend are 153 (dPMB) and
197 kg=mol (hPEB). The radii of gyration Rg of both

chains are 15:4� 1:0 nm. The results reported here are
for a blend with dPMB volume fraction�dPMB ¼ 0:20. For
the critical blend, Mw of the polymers are 153 (dPMB)
and 131 kg=mol (hPEB) and Rg of both chains are

14:0� 1:0 nm. The critical composition, based on the
Flory-Huggins theory [9,10], is �dPMB ¼ 0:493. All poly-
mers are highly entangled, resulting in extremely slow
phase separation, which can be tracked by time-resolved
SANS.
The azimuthally averaged coherent scattering intensity

I, as a function of the magnitude of the scattering vector q,
was obtained by methods reported in Ref. [8]. Static SANS
enabled the thermodynamic characterization of our sys-
tem, while time-resolved SANS enabled the study of the
early stages of phase separation. We use the Flory-Huggins
theory to quantify the thermodynamic properties of our
blends. The temperature (T) and pressure (P) dependence
of the Flory-Huggins interaction parameter � for the sys-
tem of interest and the phase diagrams of the blends used in
this Letter have been reported previously [6–8]. We define
the quench depth �ðT; PÞ ¼ �ðT; PÞ=�b � 1, where �b is
the value of � at the binodal. In Table I, we list the final T
and P of the quenches as well as the corresponding �
values for both critical and off-critical blends.
In Fig. 1, we show the calculated binodal curves for both

the critical and off-critical blends, as well as the locations
of the quenches that were investigated. [N ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

N1N2

p
and

�c is the critical composition; Ni is the number of mono-
mers per chain for each polymer i, based on a 0:1 nm3

reference volume.] The locations of the quenches relative
to the mean-field spinodal curves are shown in the inset in
Fig. 1.
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Typical data obtained from the off-critical blend are
shown in Fig. 2(a), where we show the SANS profiles
during a quench from the one-phase region to 2.34 kbar
and 59 �C, which lies in the metastable region of the phase
diagram. The arrow shows the location of the critical wave
vector qc. The SANS profiles are characterized by a rapid
increase in IðtÞ for q values smaller than qc as well as the
appearance of a peak in IðqÞ. In contrast, Iðq > qcÞ does
not change with time in the early stage of phase separation.
We have argued that the size of the critical nucleus in the
nucleation and growth regime is of the order of 1=qc [11].
In Fig. 2(b), we show SANS profiles for the off-critical
blend during a quench to 2.69 kbar and 59 �C, which lies in
the unstable region of the phase diagram. There is no
qualitative difference between the SANS profiles resulting
from quenches in the metastable and unstable regions
[compare Figs. 2(a) and 2(b)]. In the inset in Fig. 2(b),
we show the SANS profiles obtained from the critical blend
during an unstable quench to 1.66 kbar and 70 �C. The
arrow shows the location of the critical wave vector qc
obtained by well-established methods for analyzing data
during spinodal decomposition [12]. Data similar to those
shown in Fig. 2 were obtained from the critical and

off-critical blends at various quench depths by controlling
the final T and P.
In Fig. 3(a), we show the position of the peak in IðqÞ, qm,

as a function of quench time for several quenches using the
off-critical blend. There is no change (within experimental
uncertainty) in qm as a function of quench time for
quenches into the metastable as well as the unstable re-
gions. The kinetics of phase separation of the off-critical
blend is thus governed by two characteristic wave vectors
qc and qp; we take qp to be the average value of qm for

each of the quenches shown in Fig. 3(a). Quenches of the
critical blend into the unstable region of the phase diagram
also result in scattering profiles with peaks. However, in
this case, qm decreases monotonically with time as shown
in Fig. 3(b).
The Cahn-Hilliard-Cook (CHC) theory predicts the time

evolution of the scattering profile of unstable systems
[12–15]: Iðq; tÞ ¼ ITðqÞ þ ½I0ðqÞ � ITðqÞ� exp½2RðqÞt�. In
Ref. [7], we showed that our measurements are in excellent
agreement with the CHC equation, enabling the determi-
nation of I0ðqÞ, ITðqÞ, and RðqÞ for each of the quenches.
This provides the basis for understanding the time

FIG. 1 (color online). Binodal curves for the critical (in red) as
well as the off-critical (in blue) blends are shown along with the
locations of the various quenches studied. The inset shows the
full phase diagram with both the binodal and the spinodal curves.

TABLE I. Experimental conditions and quench depths

T ð�CÞ P ðkbarÞ � T ð�CÞ P ðkbarÞ �

Critical blend Off-critical blend

70 1.24 0.04 59 1.52 0.26

70 1.66 0.09 59 1.72 0.30

70 2.07 0.15 59 2.00 0.34

70 2.48 0.20 59 2.34 0.40

Off-critical blend 59 2.69 0.46

59 0.90 0.16 59 3.03 0.52

59 1.10 0.19 49 2.69 0.59

59 1.31 0.23 40 2.69 0.73

FIG. 2. Time-resolved SANS intensity I vs q measured for the
off-critical blend during the (a) 2.34 kbar (metastable) quench
and the (b) 2.69 kbar (unstable) quench (shown at t ¼ 3, 80, 102,
128, 154, and 173 min). The inset shows IðqÞ for the critical
blend during the 1.66 kbar quench. The arrows indicate the
location of the critical wave vector qc.
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evolution of qm. At short times, Iðq; tÞ � I0ðqÞ þ 2RðqÞ�
½I0ðqÞ � ITðqÞ�t. Hence, we expect a peak in IðqÞ to
emerge at the value of q, for which the initial rate of
increase of Iðq; tÞ, denoted by JðqÞ ¼ 2RðqÞ
½I0ðqÞ � ITðqÞ�, is maximum. While ITðqÞ has a pole at
q ¼ qc, RðqcÞ ¼ 0 and JðqÞ is a continuous function of q.
The pole at q ¼ qc suggests the possibility of a maximum
in JðqÞ in the vicinity of qc. This is indeed the case for all
the quenches studied. We show JðqÞ for the 1.66 kbar
quench in the inset in Fig. 3(b). There is good agreement
between the location of the maximum in JðqÞ and qc,
shown by an arrow. At long times, the exponent in the
CHC equation governs the behavior of IðqÞ, resulting in a
peak at a q value, corresponding to the maximum in RðqÞ,
which we call qp. Thus qmðt ¼ 0Þ � qc and qmðt ! 1Þ ¼
qp. The simplest function that captures the evolution of

qmðtÞ from qc to qp is qmðtÞ ¼ qp þ ðqc � qpÞ expð�t=�Þ.
This functional form is used to fit the data from the critical
blend using � as the only adjustable parameter, and the fits
are in good agreement with the data [Fig. 3(b)]. As was the
case for the off-critical blend, phase separation kinetics of
the critical blend are also governed by two characteristic

scattering vectors qc and qp. While the methodologies for

determining qc and qp in critical and off-critical blends are

different, the physical significance of the wave vectors is
the same: 1=qc represents the length scale of the smallest
structures that grow during phase separation, while 1=qp
represents the length scale that dominates the phase-
separated structure formed during the early stages.
Thus, the CHC theory provides a framework for analyz-

ing Iðq; tÞ from critical blends and explains the decrease in
qm. However, there is no framework for analyzing time-
resolved scattering data from nucleating blends. While we
do not have a theoretical basis for the time invariance of qm
for off-critical quenches, a possible explanation might be
that qm represents the average distance between nucleating
centers that does not change as the nuclei grow during the
early stages of phase separation.
In Figs. 4(a) and 4(b), we plot qpRg and qcRg as a

function of the quench depth � for the critical and off-
critical blends. The dependences of both characteristic
wave vectors on quench depth are similar for the critical
and off-critical blends except for the fact that the off-
critical data are shifted to the right along the � axis. The

FIG. 4. Dimensionless characteristic wave vectors (a) qp and
(b) qc as a function of the quench depth ð�� �bÞ=�b for the
critical (open squares) and off-critical (filled circles) blends. The
insets show qp and qc as a function of an alternative definition of

quench depth ð�� �bÞ=�s. The dashed lines mark the position
of the spinodal for the off-critical blend. Typical uncertainties
are also shown.

FIG. 3. SANS peak position qm as a function of quench time
for (a) off-critical and (b) critical blends. Solid curves are single-
parameter exponential fits to the data with � ¼ 109, 89, 65, and
56 min for � ¼ 0:04, 0.09, 0.15, and 0.2, respectively.
The typical uncertainty in qm is also shown. The inset shows
the initial rate of increase in the scattering intensity, JðqÞ, for the
1.66 kbar quench. The arrow indicates the location of qc.
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shift is larger in the qpRg versus � plot. In the insets in

Figs. 4(a) and 4(b), we show the same data plotted versus
�s ¼ ð�� �bÞ=�s, where �s is the value of � at the
spinodal. The distinction between critical and off-critical
systems is significantly reduced when �s is used to define
quench depth.

The data in Figs. 2 and 4 indicate that the qualitative
features of the scattering profiles obtained during the initial
stages of phase separation are independent of quench
depth. While the spinodal may help in organizing the
data as we have shown in the insets in Fig. 4, it is does
not demarcate different mechanistic regimes. Theoretical
work of Binder and Stauffer [16] showed that the charac-
teristic length scale of phase separation in mixtures of low
molecular weight compounds was unaffected by the pres-
ence of the spinodal. It was argued that the spinodal, a
mean-field concept, is destroyed by concentration fluctua-
tions. Anticipation that the spinodal curve and mean-field
behavior would be recovered in polymer blends was based
on the scaling arguments of de Gennes, who showed that
the Ginzburg number Gi, which quantifies the importance
of fluctuations, follows a Gi� 1=N scaling law [17]. More
refined calculations by Wang [18] indicate that while this
scaling law is correct in the large N limit, it is not obeyed
for blends with N < 104. For Gi to be significantly smaller
than unity (say, 0.01), the values of N required are of the
order of 104 for � ¼ 0:5, corresponding to component
Mw � 103 kg=mol. While experiments on such large sys-
tems may one day be carried out, they represent a small
portion of parameter space with virtually no practical
significance. There are thus compelling reasons for elimi-
nating the spinodal curve from the reported phase diagrams
of binary mixtures that undergo liquid-liquid phase sepa-
ration as we have done in Fig. 1.

Additionally, theoretical studies that improve upon the
Cahn-Hilliard treatment by using a nonlinear local free
energy [4,5] report that there is no change in the mecha-
nism of phase separation on crossing the spinodal. Novick-
Cohen uses a quartic free energy expression and reports
that a parameter B, which is related to the higher deriva-
tives of the free energy, governs the mechanism of phase
separation [4]. The nonlinear theory predicts a crossover
inside the spinodal from a nucleationlike mechanism near
the spinodal (B � 1) to classical spinodal decomposition,
deep within the spinodal (B 	 1). It can be shown that for

a Flory-Huggins blend, B � 4:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�s � �bÞ=j�� �sj

p
. For

the critical blend, �b ¼ �s ) B ¼ 0, and thus classical
spinodal decomposition is observed. For the off-critical
blend studied in this Letter, the lowest value of B was
5.2; i.e., the B 	 1 criterion was never reached and thus
only the nucleationlike mechanism was observed.

In conclusion, we have found similarities in the time-
resolved scattering signatures of the initial stages of phase

separation, with peaks observed in IðqÞ for all quenches
performed on both the critical and the off-critical polymer
blends (Fig. 2). However, there are subtle differences in the
evolution of qm with quench time (Fig. 3). For critical
quenches, the CHC theory explains the observed decrease
in qm with time. In contrast, for the off-critical blend, qm is
independent of time, regardless of whether the quench is
metastable or unstable. The difference between critical and
off-critical quenches as well as the similarities between
metastable and unstable off-critical quenches can be ex-
plained in the context of theories that incorporate nonlinear
effects into the Cahn-Hilliard analysis. However, a theo-
retical framework for describing Iðq; tÞ for nucleating
blends, akin to the CHC theory for critical quenches, is
still missing. We hope that the data in Figs. 3 and 4 will
guide the development of such a framework.
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