PRL 106, 028001 (2011)

PHYSICAL REVIEW LETTERS

week ending
14 JANUARY 2011

Drag Induced Lift in Granular Media
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Laboratory experiments and numerical simulation reveal that a submerged intruder dragged horizon-
tally at a constant velocity within a granular medium experiences a lift force whose sign and magnitude
depend on the intruder shape. Comparing the stress on a flat plate at varied inclination angle with the local
surface stress on the intruders at regions with the same orientation demonstrates that intruder lift forces are
well approximated as the sum of contributions from flat-plate elements. The plate stress is deduced from

the force balance on the flowing media near the plate.
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Objects moved through media experience drag forces
opposite to the direction of motion and lift forces perpen-
dicular to the direction of motion. The principles that
govern how object shape and orientation affect these forces
are well understood in fluids like air and water. These
principles explain how wings enable flight through air
and fins generate thrust in water [1].

Lift and drag forces are also generated by movement
within dry granular media—collections of discrete parti-
cles that interact through dissipative contact forces.
Generation and control of these forces while moving
within granular media is biologically relevant to many
desert organisms that dive into [2], or swim within [3]
sand. Lift forces are also relevant to industrial process
such as soil tillage [4].

In granular media, lift and drag forces are not as well
understood as in fluids; movement probes the complex
fluid or solid behaviors of dense granular flows [5].
While progress has been made in understanding drag
forces in slow horizontal and vertical drag, and impact
[6], there has been comparatively little work investigating
lift forces. Studies have examined lift forces for a partially
submerged vertical rod moving horizontally and for a
rotating plate [7,8], and the drag force on submerged
objects with curved surfaces [9]; however, the lift forces
experienced by horizontally translated submerged in-
truders have not been explored.

Experiment and simulation.—Experiment and simula-
tion were employed to investigate the lift (/) and drag
(F,) forces on simple shapes during horizontal translation
in granular media [Fig. 1]. In the experiment, long in-
truders with different cross sections were dragged within
a bed of glass beads with particle diameter (PD) of 0.32 =
0.02 cm and density (p) 2.47 g/cm?® [Fig. 1]. Dragging
was performed at a constant speed 10 cm/ sec with the
intruder’s vertical midpoint at depth d = 12.5 PD and its
long axis perpendicular to the direction of motion. In the
experiment, / = 31.3 PD long intruders were connected at
the midpoint to a force sensor (mounted to a linear trans-
lation stage) by a stiff stainless steel rod of diameter 2 PD.
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Following the method of [6], forces on the connecting rod
were determined in separate measurements and subtracted
from F, and F,. The grain bed was 75 PD wide by 53 PD
deep by 75 PD long. The initial packing state of the grains
was prepared by shaking the container moderately in the
horizontal direction before each run. The volume fraction
was determined through measurements of p, total
grain mass (M), and occupied volume (V) to be lﬁ”—v =
0.62 = 0.01.

The simulation employed the soft-sphere discrete ele-
ment method (DEM) [10] in which particle-particle and
particle-intruder contact interactions were determined by
the normal force F,, = k8*> — G,v,,6'/? and the tangen-
tial force Fy = uF,, where 6 is the “virtual overlap”
and v,, is the normal component of the relative velocity.
F, comprises a Hertzian contact term and a velocity-
dependent normal dissipation [10]. Constants k =
2X10°kgs2>m~'/2, G, =15kgs 'm /2, and u =
ipppit = 10.1,0.27} represent the hardness, viscoelastic
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FIG. 1 (color online). Lift and drag forces in granular media:
(a) Schematic of the experimental setup. (b) Lift force as a
function of depth for the cylinder (@), square rod (M) and half
cylinder (A). The gray region indicates the depth at which forces
in (c) were measured. (c) Net force on rods measured in the
experiment [black arrows] and simulation [gray (red) arrows].
Forces [light gray (green) arrows] on the intruder surfaces were
measured in the simulation and are scaled by four for visibility.
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constant, and particle-particle and particle-intruder friction
coefficients, respectively [11]. The simulated grain bed,
bounded by frictionless walls, was 75 PD wide by 55 PD
deep by 78 PD long and consisted of 350 000 particles in a
bidisperse mixture of equal parts 0.3 and 0.34 cm PD
spheres. Doubling any dimension of the grain bed did not
change the forces significantly. The initial volume fraction
0.62 = 0.01 was prepared by randomly distributing the
particles in the volume corresponding to the desired vol-
ume fraction and then eliminating particle overlap [12].
Using lower volume fractions reduced the magnitude of the
forces but gave similar results. Forces were nearly inde-
pendent of speed, like other drag studies in the noninertial
regime [13,14] (speed < 40 cm/s for our study). In simu-
lation, intruder dimensions and intruder speed were
matched to those in experiment and forces were averaged
over the steady-state time interval.

Shape determines lift.—In both experiment and simula-
tion, F, was sensitive to intruder cross section. As shown in
Figs. 1(b) and 1(c), F, for the half-cylinder was downward
(opposite the orientation of the curved surface), while for
the two vertically symmetric geometries, the full cylinder
and square rod, F, was positive with larger magnitude
for the cylinder than for the square. |F,| increased with
intruder depth for all intruders [Fig. 1(b)]. Experiments with
smaller glass beads (0.3 mm) gave similar results ([15]).
The lift mechanism is different from the Brazil nut effect
[16] which results from agitation of the medium by the
container.

The simulation allowed investigation of the surface
stress distribution responsible for lift and drag on the
intruders. For all shapes, the surface stress was largest
along the leading surface [Fig. 1(c) light grey (green)
arrows]. Because of the linear dependence of granular
pressure with depth and the finite size of the intruder [6],
local stress increased with depth along the flat face of the
square [Fig. 1(c)]. However, for curved intruders [e.g., the
cylinder in Fig. 1(c)], the magnitude of local stress was
primarily determined by the local surface orientation. As
the local surface tangent became aligned with the intruder
velocity the force magnitude became small, supporting
observations that surfaces parallel to the direction of mo-
tion contribute little to the drag force [9]. Since the normal
force was larger than the frictional force, the direction of
the local grain-intruder reaction force was nearly opposite
to the surface normal at all points along the intruder’s
leading surface.

The dependence of the forces on the local surface ori-
entation suggests that decomposing the surfaces into dif-
ferential area elements and summing the forces on those
elements may describe the net drag and lift experienced by
the three shapes studied. A similar decomposition was
successfully used to calculate net drag and thrust on an
undulatory sand swimmer [3] in the horizontal plane.

Plates as differential elements.—To determine if the
forces on curved intruders can be understood by decom-
posing the shape into flat-plate elements, we now study the

stresses on a flat plate with tangent angle « varied between
0° and 180° (e.g., @« = 0° is along the direction of motion).
In the simulation, a long (/ = 31.3 PD), thin (0.1 PD), flat
plate of finite width w = 7.94 PD was dragged horizon-
tally through the granular medium with its center 12.5 PD
below the initial surface, and the average normal (o) and
shear stress (7) on the leading side of the plate were
measured as a function of « [Fig. 2]. The stresses were
asymmetric about @ = 90°, and o increased rapidly for
small a, peaking at @ = 50°. At « = 60°, 7 changed sign,
indicating a reversal in grain flow along the surface. We
define the effective friction ratio on the plate as (@) =
7/0, which is zero at @ = 60° and saturates to the ex-
pected magnitude of w,; for @ > 135° and a = 0° with
opposite signs. Along the surface of the cylinder (half-
cylinder and square rod as well), the stresses approxi-
mately matched the stresses on the plate oriented at the
same angle « [Fig. 2]. Stresses on the intruders were
corrected by considering that the depth of the differential
element is different from the depth of the center of the
cylinder and assuming linear dependence of the stress on
depth.

The near equality between the stresses on plates and
local surface regions of intruders with the same orientation
implies that F', and F, for a translated rod can be approxi-
mated by the sum of forces from the corresponding shape
built from infinitesimal plates. Resolving the stresses on
the plate at orientation « into the lab frame (xyz) gives the
local lift f.(«) and local drag f,(«) force contributions per
unit area on the plate element [Fig. 3]. F, for different
shaped rods results from the integration of f_(«) contribu-
tions along the intruders leading surface, corrected by
a linear depth term, over the intruder’s infinitesimal
surface area dA, i.e., F.= [f.(a)(z/d)dA [Fig. 4(a)].
Comparison of this integration over the three rod shapes
with the measured F, from simulation and experiment
[Fig. 4(b)] shows good agreement. The orientation of
the leading surface of the cylindrical intruder varies from
0 = a = 180° and the asymmetry of f.(«) results in a net
positive lift. Positive f, at a = 90° is responsible for the
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FIG. 2 (color online). Normal (o) and shear (7) stress on the
leading surface of the cylinder (at depth 12.5 PD) as a function of
tangent angle o compared to the stresses on a plate with the same
a. B, A, @, and V represent 0 yiingers Oplates Teylinder» AN Tplage-
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FIG. 3 (color online). (a) The drag [|f,| (blue)] and lift [f,
(red)] components of the stress on a plate as a function of « in
granular media [(blue) « and (red) A] as compared to a fluid
with Re <« 1 (dashed lines) [21]. Dash-dotted line is granular
wedge model (see Force model section).

small lift on the square rod. For the half-cylinder, 90 =
a = 180°, and F is negative.

To gain insight into the nature of granular drag and lift
we compare our results to those from low Reynolds num-
ber fluids where inertia is negligible and viscous forces
dominate. f, and f, on a plate at angle « in low Re fluids
are symmetric along the direction of motion a = 90°
[Fig. 3, dashed curves] while the drag and lift forces on
the plate in granular media are asymmetric about & = 90°.
This suggests that a granular model is required to under-
stand the origin of lift in granular media.

Force model.—In the quasistatic regime of granular flow,
the force on an intruder can be determined by analyzing the
force balance on the moving volume of grains [4,13]. With
the plate acting as one flow boundary we can determine
the normal and tangential components of stress (o and 7)
on the plate surface from these force-balance equations.
This requires approximating the boundaries of the moving
media as planes and computing the forces acting on them.

Examination of the motion of grains in the vertical plane
(xz) reveals that the particles move upwards in front of the
plate and flow along a lower boundary [see Fig. 5(a) and
[15]]—a slip plane. Finite yield stress in granular media
results in flowing regions bounded by slip planes with
upward flow direction due to increasing yield stress with
depth [13]. The upper region of the flow is confined by
a boundary starting from the top edge of the plate and
approximately parallel to the lower boundary. The weight
W of this up-flow region A [17] is well fit by W = ¢ sine,
and is thus proportional to the projected plate length nor-
mal to the direction of motion [see Fig. 5(c)]. The direction
of average velocity of the particles in the band ¢ varies
little [see Fig. 5(d)] and we approximate the angle of the
flow boundaries as iy = 44°.

The plate defines one of the boundaries of A for large «
[e.g., & = 150° in Fig. 5(a)] but for small « [e.g., &« = 50°
in Fig. 5(a)], the vertical velocity of the particles adjacent
to the plate is negative; thus, the upward-flow boundary is
described by a virtual plane intersecting the top of the plate
and extending downwards at angle «,,. We therefore
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FIG. 4 (color online). (a) F, on intruders at depth 12.5 PD
calculated by integration of f.(a). The (red) outlines on the
shapes indicate the leading surface and the hatched area indi-
cates the corresponding range of « and region of integration.
(b) F, calculated by integration of f, from simulation [(red)
hatched bar] and model (gray hatched bar) compared to direct
measurement of F, in experiment (black bar) and simulation
[gray (red) bar].

consider two regimes of flow: for « = «,,,, we approxi-
mate A as bounded by the plate and two parallel surfaces
with angle ¢ [regime (P) in Fig. 5(b)]. For a < a,p, the
upwards flow region A is bounded by the virtual plane and
two parallel surfaces with angle ¢. The region adjacent to
the plate is bounded by the plate, the virtual plane, and an
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FIG. 5 (color online). Flow of grains and force-balance model:
(a) Flow field in the vertical (xz) plane for three plate (solid black
line) orientations at depth 12.5 PD. Gray boundary indicates
regions with upward flow [17]. (b) Forces on a wedge for
a<a,, [regime (VP)] and on the band for a=a,,
[regime (P)]. (c) The weight of the upward-flow region as a
function of « calculated from simulation () and fit (black) to
W = csin(a), where ¢ = 5.7 N. (d) The average flow velocity
angle i in the upward-flow region vs « (@). (¢) Normal
component of the stress on the plate ¢ calculated from the
model (black) and measured from simulation (A). The black
dashed line @ = «@,, = 97° indicates the boundary between the
two regimes (VP) and (P).
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approximately horizontal bottom surface [regime (VP) in
Fig. 5(b)]. For regime (P), the forces on the flowing band
are the forces from the top and bottom boundaries and its
weight. On the plate surface, the friction coefficient
,upeff(a) is used. Within the media, dynamic friction is
assumed and the friction coefficient is tany, determined
by the angle of repose, y = 13 = 1° [18], measured in
separate simulations by tilting the initially horizontal con-
tainer and recording the postavalanche surface orientation.
Simulation indicates that the stress at the bottom surface
dominates; therefore, we neglect the force on the top of the
flow band [F, in Fig. 5(b)]. The normal stress on the plate,
o, can be solved from the force balance on the band to
— W _cosBsin(y+y)
Iw sin(a—B—¢—7y)’
For regime (VP), the normal stress on the plate is
calculated by considering the stress on the wedge adjacent
to the plate. The stress on the virtual plane can be solved by
the above equation with the corresponding weight of the
band and a fixed angle « = «,,,. Solving the force-balance

obtain o(a) where B(a) = tan™! w e

equation for this triangular wedge we obtain o(a) = ¥ X
i sin(a,,—B'—

sinizsviig’dig@y) si(rl(Zu]LBB—y)Y)’ where B/ = B(a, ). The pa-

rameter a,, = 97°, determined from a best fit of o(a)

from simulation, is within the expected range from flow

field observations [Fig. 5(a)].

A comparison of ¢ calculated from the wedge model and
o measured directly in the simulation demonstrates that
the model captures the asymmetric shape of o [Fig. 5(e)].
Integration of f, calculated from the model over
the nonplaner intruder surfaces yields net lift forces in
agreement with those from other methods [Fig. 4(b)].
The decrease in o above a = 90° results from the decrease
in W with increasing «. For a =90°, although W
increases with «, the stress on A is transmitted by the
wedge which induces extra resistance on the bottom plane;
therefore, o peaks at a smaller than 90°. The model
assumes A (and thus W) increases with depth which
explains the monotonic increase of |F_| with depth. The
discrepancy between o in model and simulation may be
due to the simplified description of the shape of
the boundaries of the flowing media, the approximation
of ¢ and a,, as constants and W as a simple function, and
neglecting F,.

The decomposition of force on the intruder into forces
on differential elements assumes that the flowing region
corresponding to each element is not disturbed by other
elements. This may explain the difference between the
stress on the plate and the local stress along the intruder
for small « (corresponding to elements on the bottom),
where the upper flow boundary for these elements is
obstructed by higher regions of the cylinder. For objects
with concave leading surfaces, the use of differential
surface elements may require consideration of jamming
in the concave region.

We have shown that the magnitude and sign of the drag
induced lift force in granular media depends on the shape

and depth of the intruder. Drag induced lift on nonplanar
intruders can be computed as the summation of lift forces
from planar elements which each experience a lift force
resulting from the pushing of material up a slip plane. The
increase of yield stress with depth in granular media causes
the asymmetric flow and enhances the lift force on a plate
facing downward. Our understanding of these forces can
elucidate the effects of head and body shapes [19] of sand
burrowing organisms, and aid in design of control surfaces
to allow robots [20] to maneuver in granular environments.
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