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We study the population dynamics of a Bose-Einstein condensate in a double-well potential throughout

the crossover from Josephson dynamics to hydrodynamics. At barriers higher than the chemical potential,

we observe slow oscillations well described by a Josephson model. In the limit of low barriers, the

fundamental frequency agrees with a simple hydrodynamic model, but we also observe a second, higher

frequency. A full numerical simulation of the Gross-Pitaevskii equation giving the frequencies and

amplitudes of the observed modes between these two limits is compared to the data and is used to

understand the origin of the higher mode. Implications for trapped matter-wave interferometers are

discussed.
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Quantum mechanical transport is a consequence of spa-
tial variations in phase. Superfluids behave like perfect
inviscid irrotational fluids, whose velocity is the gradient
of a local phase, so long as the confining potential is
smooth on the scale of the healing length. Where the
density is small, as it is near surfaces, quantum kinetic
terms must be added to the classical hydrodynamic equa-
tions. Macroscopic quantum coherence phenomena, such
as Josephson effects, emerge when superfluids are weakly
linked across such a barrier region.

Josephson effects have been demonstrated with super-
conductors [1], liquid helium [2,3], and ultracold gases in
both double-well [4,5] and multiple-well optical trapping
potentials [6]. The canonical description of these experi-
ments employs a two-mode model [7–9], in which a sinu-
soidal current-phase relationship emerges. Hydrodynamics
has also been studied in both liquids and ultracold gases
[10]. The relative diluteness of gases makes a satisfying
ab initio description possible [11].

In this Letter, we study the transport of a Bose-Einstein
condensate (BEC) between two wells separated by a tun-
able barrier and observe the crossover from hydrodynamic
to Josephson transport. As the barrier height Vb is adjusted
from below to above the BEC chemical potential, �, the
density in the link region decreases until it classically
vanishes when Vb ¼ �. The healing length in the link
region, �, increases with Vb and dictates the nature of
transport through this region. Oscillatory dynamics span-
ning three octaves are observed as we smoothly tune �
from 0:3d to 2d, where d is the separation between the
wells.

Examination of the dynamics of an elongated BEC in a
double well is timely. Recent experiments have created
squeezed and entangled states by adiabatically splitting a
BEC [12–14]. The degree of squeezing inferred in the

elongated case [12,13] seems to exceed what would be
expected in thermal equilibrium [14], raising the possibil-
ity that out-of-equilibrium dynamics may be important.
With much remaining to be explored in these systems,
this work represents the first study of the dynamics in the
crossover regime.
Our experiment begins as 87Rb atoms in the jF ¼ 2;

mF ¼ 2i ground state are trapped on an atom chip and
evaporatively cooled in a static magnetic potential BSðrÞ,
as described elsewhere [15]. To prevent gravitational sag
and to compress the trap in the weak direction (with
characteristic trap frequency !y ¼ 2�� 95 Hz), we add

an attractive optical potential with a 1064 nm beam. We
dress the static potential with an oscillating radio-
frequency (rf) magnetic field [16,17] radiating from two
parallel wires on the atom chip [Fig. 1(a)]. In the rotating-
wave approximation, the adiabatic potential created by the
combination of the static chip trap, the rf dressing, and the
optical force is

UðrÞ ¼ m0
FsgnðgFÞ@
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where m0
F ¼ 2 is the effective magnetic quantum number,

�ðrÞ ¼ !rf � j�bgFBSðrÞ=@j is the detuning, �?ðrÞ ¼
j�bgFBrf;?ðrÞ=2@j is the rf Rabi frequency, Brf;?ðrÞ ¼
jBSðrÞ � BrfðrÞj=jBSðrÞj is the amplitude of the rf field
locally perpendicular to BSðrÞ, �b is the Bohr magneton,
gF is the Landé g factor, @ is the reduced Planck’s constant,
andm is the atomic mass. By assuming the individual wells
are harmonic near each minimum, calculations show that
!z ¼ 2�� 425 Hz, and !x varies from 2�� 350 Hz to
2�� 770 Hz as we tune from low to high barriers. For
comparison between theory and experiment, we account
for small corrections to Eq. (1) beyond the rotating-wave
approximation [18,19].
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After turning on the dressing field at a frequency
!rf ¼ 2�� 765 kHz, where the trap is a single well, we
evaporatively cool to produce a BEC with no discernible
thermal fraction. In 20 ms, we adiabatically increase!rf to
a new value characterized by �0 � �ðr ¼ 0Þ, such that the
barrier Vb rises and the dressed state potential splits along
the x direction into two elongated traps [20].

Using a second 1064 nm beam weakly focused off-
center in x, an approximately linear potential is added
across the double-well junction to bias the population
towards one well [Fig. 1(b)]. By applying the bias beam
before and during the splitting process, we prepare systems
of atoms with a population imbalance Z � ðNR � NLÞ=
ðNR þ NLÞ, where NR (NL) is the number of atoms in the
right (left) well. The range of initial population imbalances
Z0 ¼ Zðt ¼ 0Þ we use is 0.05 to 0.10, small enough to
avoid self-trapping [4]. To initiate the dynamics, the power
of the bias beam is ramped off in 0.5 ms (faster than the
population dynamics) and the out-of-equilibrium system is
allowed to evolve for a variable time t in the symmetric
double well [Fig. 1(c)].

To measure the time-dependent population ZðtÞ, we
freeze dynamics by rapidly increasing both Brf and !rf to
separate the wells by 70 �m, where Vb=�� 104. We
release the clouds from the trap and perform standard
absorption imaging along y after 1.3 ms time-of-flight
[Fig. 2(b)]. Analysis of these images allows us to determine
NR and NL to a precision of �50 atoms.

Upon release of the potential bias, we find that the
population ZðtÞ oscillates about Z ¼ 0 [Fig. 2(a)] [21].
To analyze the dynamics, we use a Fourier transform (FT)

to find the dominant frequency components [Fig. 2(c)]. We
repeat this measurement at many values of Vb=�, where �
is the Thomas-Fermi chemical potential, by varying �0.
For the purposes of this analysis, we ignore the decay of
this signal, the 1=e time constant of which is typically two
oscillation periods.
When the barrier is low, ZðtÞ consistently displays two

dominant frequency components. For higher barriers, the
amplitude of the higher-frequency mode decreases until
only a single frequency rises above the noise floor. The
white points in Fig. 3 give these frequencies as a function
of the experimental parameter �0 and the calculated ratio
of barrier height to chemical potential, Vb=�. The ensem-
bles used in Fig. 3 had total atom number N ¼ 6600�
400ð�1700Þ, where the error bar is statistical (systematic).
In the low- and high-barrier limits, simple models can be

used to understand the dynamics. For low barriers, the
hydrodynamic equations of motion can be used to estimate
the frequency of population oscillation. Assuming a har-
monic population response for some Z0, the response
frequency is

!2
HD ¼ � 2

mNZ0

Z
S
�n̂ � ~rðUþ g�ÞdS; (2)

where � is the density of the condensate at t ¼ 0, S is the
surface in the y-z plane bisecting the double well, and n̂ is
the vector normal to this surface. Plotting !HD in Fig. 3
(dotted line), we find good agreement with the lower fre-
quency mode at low barriers. Since tunneling cannot con-
tribute to hydrodynamic transport, !HD ! 0 as Vb ! �.
The breakdown in hydrodynamics also coincides with an
increasing healing length, as shown in the inset of Fig. 3.
In the opposite limit, when tunneling dominates trans-

port, a Josephson model [8] accurately predicts the
frequency of the highest barrier points,

FIG. 2 (color online). (a) Population imbalance, Z, vs time for
� ¼ 2�� ð0:1� 0:5Þ kHz, N ¼ 5900� 150. The dashed line
is a decaying two-frequency sinusoidal fit to the data, using two
fixed frequencies from the FT (lower inset). Each point is the
average of six repetitions of the experiment; error bars are
statistical. (b) Averaged absorption image after separation and
1.3 ms time of flight, with right and left measurement regions
(dashed boxes) indicated. (c) FT amplitude spectrum of data
showing two distinct peaks at 268� 6 and 151� 13 Hz rising
above the noise floor (grey).

FIG. 1 (color online). (a) Schematic of atom chip double-well
trap. Central Z wire [34] carries static trapping current, IS ¼
2 A, which, with uniform external fields Bext ¼
h2:2; 0:11; 0i mT, results in an Ioffe-Pritchard style trap
with harmonic trapping frequencies ð!x0;z0 ; !y0 Þ ¼ 2��
ð1300; 10Þ Hz. Side wires are 1.58 mm from trap center and
carry rf currents with amplitude Irf . This rf current produces a
z-polarized field at the trap location with amplitude Brf ¼
23:6� 0:6 �T [peak Rabi frequency �¼2��ð82�2 kHzÞ].
A levitation beam [gray (pink)] is positioned to provide a force-
canceling gravity (z direction) while compressing the sample
along y. Atoms are trapped 190 �m from the chip surface. (b) A
schematic one-dimensional cut at t ¼ �0:5 ms through trapping
potential along x (solid line) in the presence of linear bias
(dashed line) and (c) balanced potential at t ¼ 0, with Z0 � 0.
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where �E is the energy difference between the symmetric
and antisymmetric ground states of the double-well poten-
tial, N is total atom number, and �loc is the chemical
potential on one side of the well [19]. The agreement is
surprisingly good even for Vb just above �, beyond which
the frequency decreases exponentially. To our knowledge,
this constitutes the first direct observation of tunneling
transport of neutral atoms through a magnetic barrier,
only inferred, for instance, in Refs. [12,22].

To explain the crossover behavior and the existence of
the higher-frequency mode, we turn to numerical solutions
of a time-dependent three-dimensional Gross-Pitaevskii
equation (GPE) [8,23], which should describe all
mean-field dynamics at T ¼ 0. The slope and separation
of the measured frequencies are well captured by the GPE,
as shown in Fig. 3, though the decay of population imbal-
ance is not reproduced by these simulations.

The structure and origin of the higher-lying dynamical
mode can be studied within the simulations. If our trap
were smoothly deformed to a spherical harmonic potential,
the two observed modes would connect to odd-parity
modes [11]: the lower mode connects to the lowest
m ¼ 0 mode (coming from the ‘ ¼ 1 mode at spherical
symmetry, where the quantum numbers ‘ and m label the
angular momentum of the excitation and its projection
along the axis of symmetry, y, respectively), while the
higher mode originates from the lowest m ¼ 2 mode
(‘ ¼ 3 at spherical symmetry) [24].
With insight from GPE simulations, the observation of a

second dynamical mode, which was not seen in previous
experimental work [4,5], can be explained. In a purely
harmonic trap, a linear bias excites only a dipole mode
[25]. By breaking harmonicity along the splitting direction,
x, the barrier allows the linear perturbation (‘ ¼ 1, m ¼ 0,
where x is the azimuthal axis) to excitemultiple Bogoliubov
modes [26]. Numerical studies show that two additional
ingredients are required to excite the higher mode. First,
atom-atom interactions couple the x excitation to the trans-
verse (y, z) motion through the nonlinear term in the GPE.
Second, the anisotropy of the trap in the y-z plane mixes the
m ¼ 0 and m ¼ 2 modes such that each of the resulting
modes drives population transfer between wells.
Figure 4 shows the relative strength R1 ¼ a1=ða1 þ a2Þ

of the lower frequency mode as a function of the barrier
height. The amplitude a1 (a2) of the lower (higher) fre-
quency mode is extracted from a decaying two-frequency
sinusoidal fit. The modes have comparable strength, even
in the linear perturbation regime, when the barrier is below
the chemical potential. The small spread in the GPE am-
plitudes shown by the grey band indicates that the higher
mode is excited independently of the initial imbalance, and
is not simply due to a high-amplitude nonlinearity.

FIG. 3 (color online). Frequency components of population
imbalance vs rf detuning (measured) and barrier height to
chemical potential ratio (calculated). Experimental points (white
circles) represent the two dominant Fourier components at each
detuning; error bars represent uncertainty contributed by noise in
the FT from a single time series, but do not include shot-to-shot
fluctuations. The spectral weight is represented through the color
map, which has been linearly smoothed between discrete values
of Vb=� and darker colors indicate greater spectral weight. All
calculations use N ¼ 8000 and Z0 ¼ 0:075, and a single-
parameter fit of the data to the GPE curves shifts all experimental
points by �shift ¼ 2�� 5:1 kHz [19] to compensate for a sys-
tematic unknown in BSð0Þ. Statistical vertical error bars are
shown, while a typical horizontal statistical error bar is shown
at Vb=� � 0:5. Dashed lines represent 3D GPE frequencies, the
solid line the plasma oscillation frequency predicted by the
Josephson model, !p, and the dotted line the hydrodynamic

approximation, !HD=2�. White bars at Vb=�� 0:1 indicate the
bounds of the GPE simulation corresponding to the systematic
plus statistical uncertainty in atom number. Inset: ratio of healing
length, �, to interwell distance, d, as a function of Vb=�. � is
calculated at the center of the barrier.

FIG. 4. Fraction of low-frequency mode in population dynam-
ics. Dashed line shows the GPE simulation for 8000 atoms with
initial imbalance Zð0Þ ¼ 0:075. The grey shaded area represents
the variation of the GPE calculations over the range of Zð0Þ ¼
0:05 to 0.10. The vertical error bars are statistical; the statistical
uncertainty in � is 2�� 0:5 kHz (not shown). The GPE calcu-
lation gives R1 ¼ 1 when Vb=� ’ 1:1.
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The trend in R1 reflects the shape of the trap. When the
barrier is raised from zero, the higher mode is at first more
easily excited due to an increased anharmonicity along x as
the trap bottom becomes flatter. By further increasing the
barrier, the higher-frequency mode disappears from the
population oscillation spectrum due to the vanishing exci-
tation of transverse modes. As the wave functions in each
individual well are increasingly localized to the effectively
harmonic minima, the linear bias no longer excites intra-
well transverse motion. Furthermore, in the linear pertur-
bation regime, the interwell Josephson plasma oscillation,
like all Bogoliubov modes, cannot itself trigger any other
collective mode.

In conclusion, we have studied the quantum transport of
a BEC in a double-well potential throughout the crossover
from hydrodynamic to Josephson regimes. Apart from
fundamental interest, knowing and controlling the nature
of superfluid transport is crucial for technological applica-
tions of weak-link-based devices, such as double-slit inter-
ferometers [12,20,27–29]. The adiabatic transformation of
a BEC from a single- to a double-well trapping potential
has been discussed in recent experimental works
[12,14,22,30,31] in the context of the Josephson model,
valid at high barriers [32]. Our work demonstrates that for
Vb < �, the lowest mode frequency will lie below that
estimated by the Josephson model. Furthermore, the
higher-lying mode we observe approaches the lowest col-
lective mode as!y � !z [19] and may be important to the

dynamics of splitting in strongly anisotropic double wells
[12,33]. Whether using splitting to prepare entangled states
[14], or recombination [31] to perform closed-loop inter-
ferometry [30], an improved understanding of double-well
dynamics provides a foundation for controlling meso-
scopic superfluids.
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