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We study a one-dimensional atomic lattice gas in which Rydberg atoms are excited by a laser and whose

external dynamics is frozen.We identify a parameter regime in which the Hamiltonian is well approximated

by a spin Hamiltonian with quasilocal many-body interactions which possesses an exact analytic ground

state solution. This state is a superposition of all states of the system that are compatible with an interaction

induced constraint weighted by a fugacity. We perform a detailed analysis of this state which exhibits a

crossover between a paramagnetic phase with short-ranged correlations and a crystal. This study also leads

us to a class of spin models with many-body interactions that permit an analytic ground state solution.
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Strong interactions competing with noncommuting
single particle terms in a many-body quantum
Hamiltonian often lead to nonclassical ground states.
Only in exceptional cases analytic or approximately ana-
lytic results can be found. Paradigm examples are the one-
dimensional xy model in a transverse field [1] or the
celebrated Affleck-Kennedy-Lieb-Tasaki spin model [2],
both of which have proven indispensable for the under-
standing of many-body phenomena in magnetic com-
pounds and valence bond solids. Finding models of
experimentally realizable many-body Hamiltonians with
exact solutions is hence of fundamental interest.

Models of many-body quantum systems with origin in
condensed matter physics are currently implemented and
studied in ultracold atomic systems with great success [3].
Most experiments so far are carried out with ground state
atoms, but very recent efforts exploit the unique properties
of atoms excited to Rydberg states. These states offer
strong and long-ranged interatomic interactions in con-
junction with an extraordinarily long lifetime [4,5]. This
enabled remarkable experiments which studied the coher-
ence properties in strongly interacting Rydberg gases [6,7]
and eventually demonstrated the feasibility to process
quantum information with Rydberg atoms [8,9]. Rydberg
gases are moreover an almost ideal experimental imple-
mentation of interacting spin systems such as the afore-
mentioned xy model [10]. This stimulated a plethora of
theoretical studies investigating the real time evolution
[11,12] as well as ground states of these spin models
[13–15]. The latter, predominantly numerical work, re-
vealed a variety of interesting quantum phases and studied
the creation [13,14] as well as the melting dynamics [15] of
dynamically created crystals.

In this work we provide an analytic study of the non-
trivial entangled many-body ground state of a strongly
interacting one-dimensional Rydberg gas. The strong in-
teraction among excited atoms gives rise to an effective
Hamiltonian with a quasilocal three-body interaction that

effectuates a set of noncommuting local constraints. For
certain values of the experimental parameters this
Hamiltonian is accurately approximated by a spin
Hamiltonian which has an exact analytical ground state
solution. We show that this is a consequence of the fact that
the Hamiltonian possesses a manifold of approximate
Rokhsar-Kivelson points [16] where it assumes a so-called
stochastic matrix form [17]. The ground state is a coherent
superposition of all states compatible with all the local
constraints weighted by an effective fugacity. We analyti-
cally explore the properties of this state, which shows a
crossover between a paramagnetic phase with short-ranged
correlations and a crystalline ordered state. Our study
highlights a new perspective for creating and studying
nonclassical and entangled states with ultracold Rydberg
gases. It also leads to a class of spin models with many-
body interaction whose nontrivial ground state solution can
be found analytically.
Our system consists of a deep one-dimensional lattice

with L sites evenly spaced at a distance a. For convenience
we consider periodic boundary conditions, but this is not a
necessary requirement. Each site is occupied by a single
atom which we treat within the two-level approximation
where every atom forms a (pseudo)spin 1=2 particle. The
atomic ground state jgi � j#i is coupled to a Rydberg state
jri � j"i by a laser with Rabi frequency� and detuning�.
Atoms in Rydberg states interact via a power law interac-
tion with (inverse) exponent � > 0. The Hamiltonian of
this system is (within the rotating wave approximation for
the atom-laser coupling) given by

H0 ¼ �
XL
k

�k
x þ �

XL
k

nk þ V
X
m>k

nmnk
jk�mj� : (1)

Here V is the interaction strength, �k
x is a Pauli matrix, and

nk ¼ �kþ�k� is the Rydberg number operator with�k� being
the raising and lowering operators of the kth spin. This
Hamiltonian is an Ising model with long-range interactions
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in a transverse and a longitudinal field. Most experiments to
date use atomic states that interact via the van der Waals
interaction, i.e., � ¼ 6. We will focus here on this case, but
our approach also works for the dipole-dipole interacting
case with � ¼ 3. The Hamiltonian (1) was employed suc-
cessfully to describe the excitation dynamics of driven
Rydberg gases and has been proven to reflect very accu-
rately the actual experimental situation [6,18].

The interaction between excited atoms strongly affects
the excitation dynamics of the system through a mecha-
nism which is called the Rydberg blockade [19]: The large
interaction induced energy shift makes it virtually impos-
sible to excite two nearby atoms simultaneously to the
Rydberg state; i.e., the presence of one excited atom blocks
the excitation of atoms in its vicinity (we assume V � j�j
and� � V throughout). In what follows wewill make this
blockade effect manifest, which will create an effective
three-body spin interaction in the Hamiltonian. Because of
the power law decay, the strongest interaction takes place
between nearest neighbors and we assume that a strict
blockade is only present between them. We transform the
Hamiltonian (1) into an interaction picture with respect to
the nearest neighbor interaction by applying the unitary
transformation U ¼ exp½�itV

P
L
k nknkþ1�. The first term

of Eq. (1) is the only one that does not commute with
U, and one obtains Uy�k

xU ¼ ½Pk�1 þ nk�1e
itV�

�kþ½Pkþ1 þ nkþ1e
itV� þ H:c:, where Pk � 1� nk. Note

that both nk and Pk are projection operators. Since
V � � one can neglect the terms with rapidly oscillating
phases, which is essentially a rotating wave approximation.
We then arrive at our working Hamiltonian

H ¼ �
XL
k

Pk�1�
k
xPkþ1 þ �

XL
k

nk þ V
X

m>kþ1

nmnk
jk�mj� ;

(2)

where the first term is the blockade-induced three-body
interaction: The excitation of an atom to a Rydberg state
on site k can only take place provided that both projectors
Pk�1 and Pkþ1 yield a nonzero value. This imposes a
constraint such that the Hilbert space splits into uncoupled
blocks, each of which is characterized by the number of
pairs of neighboring excited atoms. We will be concerned
with the subspace in which there is no simultaneous excita-
tion of nearest neighbors (referred to as physical subspace).

In the following we will show that for a certain set of
parameters (�, �, V) Hamiltonian (2) possesses an ap-
proximate analytical solution. The decisive idea is to add
the term H� ¼ P

kPk�1Pkþ1½��1nk þ �ð1� nkÞ� to

Hamiltonian (2) where � is a real and positive parameter
and subsequently subtract it. Obviously, adding and sub-
tracting H� does not change H, but regrouping all terms

conveniently allows us to rewrite the Hamiltonian as H ¼
E0 þH3body þH0, where now each term depends on �.

Here E0 ¼ ��L� will turn out to be the approximate
ground state energy, H3body is a spin Hamiltonian with

three-body interactions that has an analytic ground state
solution, and H0 is a perturbation. H3body is given by

H3body ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1 þ �

q XL
k

hk ¼ �
XL
k

hyk hk; (3)

with

hk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

��1 þ �

s
Pk�1Pkþ1½�k

x þ ��1nk þ �ð1� nkÞ�: (4)

The term of hk which contains �k
x is proportional to the

three-body interaction term in Hamiltonian (2). The re-
maining ones are chosen such that hk becomes a self-
adjoint operator with positive-semidefinite spectrum and

only one nonzero eigenvalue:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1 þ �

p
. These are the

terms that were introduced by H�. The part that is cancel-

ing them is contained in the perturbation H0, which we
discuss later. At first, we construct the ground state j�i of
the Hamiltonian H3body. This state is annihilated by all hk
and hence has energy zero. Note that operators acting on
neighboring sites do not commute; i.e., ½hk; hk�1� � 0. It is
thus not possible to use a local zero eigenstate of each hk
and then form the total ground state by a product of these
states. Instead, one finds that the state of the physical
subspace that is annihilated by all hk is given by

j�i ¼ 1ffiffiffiffiffiffi
Z�

p YL
k

ð1� �Pk�1�
kþPkþ1Þj## . . . #i; (5)

where Z� is a normalization constant. This state is a

coherent superposition of all states that have no nearest
neighbor excitations. The probability of each state is
weighted by the factor ð�2Þn, where n is the total number
of Rydberg excitations in this state. This state is highly
nonclassical as it is a coherent superposition of all states
from the physical subspace and cannot (except for � ¼ 0)
be written as a product state. The existence of this ground
state is due to the special projector property of each term of
Hamiltonian (3), which is also known as stochastic matrix
form [17].
In order to calculate the normalization constant Z� one

has to count the number of all allowed arrangements of
excited atoms on the lattice and sum them using the
weights ð�2Þn. Since there is strict nearest neighbor exclu-
sion, this sum is equivalent to the partition function of a
lattice gas of hard-core dimers, i.e., hard objects that
occupy two neighboring lattice sites. In the limit L � 1

we obtain Z� ¼ ½ð1=2Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

p Þ�L such that we can

identify �2 as a fugacity. The fugacity suppresses or en-
hances the weight of a state with n excited atoms or dimers
by ð�2Þn [20]. We emphasize that the correspondence
between the quantum problem and the dimer gas is
solely formal. One striking difference is the range of the
interaction: for the classical system only nearest neighbors
interact, while in the quantum system also interaction
among next-nearest neighbors occur.
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The aim is now to find a set of parameters (�, �, V) or a
whole manifold of them such that H0 is negligible
compared to H3body. In this case Hamiltonian (2) is very

accurately approximated byH3body, for which we know the

ground state. One finds that

H0 ¼ XL
k

½�þ�ð3�� ��1Þ þ ð2��V ���Þnkþ2�nk

þ V
X

m>kþ2

nmnk
jk�mj�

��ð�� ��1ÞX
k

nknkþ1ð2� nkþ2Þ: (6)

The first term ofH0 can be eliminated exactly provided that
the conditions (i) � ¼ ��ð3�� ��1Þ and (ii) V ¼ 2���
are satisfied. The contribution of the second term in Eq. (6)
is small since it accounts for the strongly diminished
interaction between excited atoms that are at least three
lattice sites apart. The third term vanishes exactly at � ¼ 1,
but its contribution is negligible even away from this point
since the probability for a simultaneous excitation of
neighboring atoms is highly suppressed (even strictly
zero in the physical subspace).

These considerations imply that upon meeting
condition (ii), i.e., for an interaction strength satisfying
V ¼ 2���, the ground state energy of the interacting

Rydberg gas is given by E0 ¼ ���L, where � ¼ ð1=6Þ�
½�ð�=�Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12þ ð�=�Þ2p �. The latter relation is ob-
tained directly from condition (i) and yields the conversion
between the laser parameters and the square root of the
fugacity, i.e., �. That this is indeed the case is shown in
Fig. 1(a) where we compare the ground state energy E0

(dotted red curve) with the numerical result (solid blue
curve) obtained for a lattice with L ¼ 20 sites. The ex-
cellent agreement indicates that conditions (i) and (ii)
define a manifold of approximate Rokhsar-Kivelson points
[16] in the parameter space (�, �, V) where the
Hamiltonian of a gas of interacting Rydberg atoms (1)
allows the approximate stochastic matrix form decompo-
sition [17] shown in Eq. (3) and has the ground state (5).

We can now calculate properties of the state (5) in the
same spirit in which we obtained the normalization con-
stant Z�. Expectation values of classical observables, such

as the mean number of excited atoms or density-density
correlations, then reduce to the manipulation of the parti-
tion function with fugacity �2. The mean density of

Rydberg atoms in the state (5) is given by hNi=L¼P
kh�jnkj�i=L¼½1�1=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4�2
p Þ�=2, which is shown in

Fig. 1(b). The agreement with the numerical data is good
with slight deviations at large fugacities. This indicates that
corrections to Hamiltonian (2) might become important
here in particular for larger atom numbers. We can fur-
thermore obtain the full statistics of the Rydberg number
distribution by taking derivatives of the partition function:
The probability pk to count k Rydberg atoms is given
by pk ¼ ½ðk!Þ�1@k

�2Z�j�¼0�=Z�. A common way for the

characterization of the distribution function is the Mandel
Q factor which quantifies the difference of the distribution
pk from a Poissonian [21]. This quantity, which is plotted

in Fig. 1(c), evaluates to Q ¼ ðhN2i � hNi2Þ=hNi � 1 ¼
1=ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4�2
p Þ � ð1þ 8�2Þ=ð2þ 8�2Þ. Except for � ¼ 0

it is negative, showing a pronounced sub-Poissonian behav-
ior which is expected for strongly interacting systems [22].
A further important quantity characterizing the state (5)

is the connected density-density correlation function

g1;1þmð�Þ ¼ hn1n1þmi � hn1ihn1þmi ¼ �2=ð1 þ 4�2Þ �
½ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 4�2
p � 2�2 � 1Þ=ð2�2Þ�m. It is shown in Figs. 1(d)

and 1(e) together with the numerical result, both again in
excellent agreement. Visible correlations build up as soon
as �< 0. They are exponentially decaying with the inter-
particle distance and alternating in sign, with anticorrela-
tion between nearest neighbors. The corresponding
correlation length is proportional to �a and reaches the
system size when ��=� � 3L.
We will now perform an analysis of the coherent prop-

erties of the system. To this end we study the reduced
single particle density matrix �1ð�Þ, which allows us to
quantify the entanglement of one spin with the rest of the
system. We find

�1ð�Þ ¼ ð1=LÞ hNi �hNi=�
�hNi=� L� hNi

� �
;

which, except for � ¼ 0, represent a mixed state. This
indicates entanglement of one atom with the remaining
others which can be quantified by the entanglement

FIG. 1 (color online). Comparison between the numerical re-
sults obtained for a lattice with L ¼ 20 sites and � ¼ 6 (solid
blue curve) and the analytical expressions (dashed red curve).
(a) Energy per particle in the ground state, (b) mean density of
Rydberg atoms on the lattice, (c) Mandel Q parameter of the
Rydberg number distribution. (d) Numerically calculated
density-density correlation function. (e) Density-density corre-
lation function obtained for the state (5). Note that at the same
time as � the potential is also varied according to V ¼ 2���.
The values of � are given underneath (c).
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entropy S ¼ �Tr�1ð�Þ log�1ð�Þ. This function is shown in
Fig. 2(a). For large positive detuning, i.e., � � 0, the
ground state is a product state jiniti ¼ Q

kjgik and hence
no entanglement is present. S increases monotonically with
� and saturates at a value log 2 for � ! 1, which indicates
maximal entanglement. Here the ground state is formally
given by a coherent superposition of the two possible

antiferromagnetic states, i.e., ð1= ffiffiffi
2

p Þ½j"#"# . . .i þ j#"#" . . .i�
(even number of sites assumed). This is a Greenberger-
Horne-Zeilinger (GHZ) state.

The above considerations indicate that the typical experi-
mental initial state jiniti (no Rydberg atoms present) can be
adiabatically connected to the fully entangled GHZ state by
varying � from zero to infinity, i.e., by varying� and � in
time. Experimentally this is usually done at fixed interac-
tion strength V. The approximate manifold of Rokhsar-
Kivelson points is then given through ð2��=VÞ2 �
ð2��=VÞ ¼ 3, which is obtained from (i) and (ii) and shown
as the black curve in Fig. 2(b). The GHZ state is obtained
by initially choosing a large positive detuning and follow-
ing this curve until one reaches �min ¼ �3=2�V, i.e.,
�min ¼ 0. Performing this process adiabatically becomes
increasingly difficult as the number of particles increases
due to an ever closing energy gap. Eventually, this will lead
to symmetry breaking which singles out one of the two
antiferromagnetic states or leads to domain formation.
Experiments have to be carried out on a time shorter than
the lifetime of the atomic Rydberg state (typically 100 �s
for rubidium and a principal quantum number in the range
n ¼ 40–70). It is indeed possible to find experimental
parameters that achieve that (see Refs. [12–14,23]).

Let us finally discuss the generalization of Hamiltonian
(3) to higher dimensions and blockade ranges that can go

beyond the nearest neighbors. To this end we replace the
product Pk�1Pkþ1 by an operator which projects onto the
state

Q
q�Gk

j #iq. HereGk is a set that contains the indices of

lattice sites that surround the kth site, i.e., that are blocked
when spin k is excited [see Fig. 2(c)]. The ground state of
this Hamiltonian is then constructed analogous to the state
(5) with the constraint being that a simultaneous excitation
on site k and on any of the sites contained inGk is forbidden.
Calculations of expectation values here again reduce to the
manipulation of a partition sum of a classical system of hard
objects. It is not immediately evident whether such models
actually represent an experimentally relevant system. This
depends on whether conditions similar to (i) and (ii) can be
found which cancel the unwanted many-body terms in H0.
However, the knowledge of the ground state is valuable,
e.g., for performing perturbation theory in order to move
away from the exactly solvable situation.
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FIG. 2 (color online). (a) Entanglement entropy S of a single
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ground state becomes a GHZ state and S reaches its maximum
log 2. (b) Density of excited atoms as a function of the detuning
and the Rabi frequency. The black line represents the set of
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alized to higher dimensions (here 2D) where the excitation on the
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