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Hydrodynamic instabilities are usually investigated in confined geometries where the resulting

spatiotemporal pattern is constrained by the boundary conditions. Here we study the Faraday instability

in domains with flexible boundaries. This is implemented by triggering this instability in floating fluid

drops. An interaction of Faraday waves with the shape of the drop is observed, the radiation pressure of the

waves exerting a force on the surface tension held boundaries. Two regimes are observed. In the first one

there is a coadaptation of the wave pattern with the shape of the domain so that a steady configuration is

reached. In the second one the radiation pressure dominates and no steady regime is reached. The drop

stretches and ultimately breaks into smaller domains that have a complex dynamics including spontaneous

propagation.
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Fluid dynamics instabilities usually appear in two types
of situations corresponding to confined or opened geome-
tries, respectively. For instance thermal buoyancy, when
confined in a box, gives rise to patterns of Rayleigh-Bénard
rolls adapted to the boundaries [1]. In contrast in an open
medium, an isolated source of heat generates a thermal
plume in which the growing turbulent structures define the
envelop of the unstable region [2,3]. We address an inter-
mediate situation in which an instability develops inside a
finite domain with flexible boundaries and we study the
interplay between the pattern and its borders. We use the
Faraday instability in which waves form on the surface of a
fluid submitted to vertical oscillations [4] and whose re-
sulting patterns have been widely studied in confined
geometries [5,6]. Here we choose to confine the Faraday
instability in a drop of low viscosity floating on a very
viscous, stable, immiscible fluid [Fig. 1(a)]. We use a
classical Faraday experiment setup. A circular cell (radius
10 cm, depth 0.8 cm) is placed on a vibration exciter
generating a vertical oscillation of acceleration �ðtÞ ¼
�m cosð2�f0tÞ. The investigated frequency and amplitude
ranges are respectively 50 Hz< f0 < 250 Hz and 0<
�m=g < 10, where g is the acceleration of gravity. The
motion can be observed by a stroboscopic video camera or
a high speed video camera. The heavier and more viscous
fluid (fluid 1) fills the cell and forms a bath of thickness
5 mm. A controlled quantity V2 of the less viscous fluid
(fluid 2) is then deposited becoming a floating drop that
forms a single circular pancake far from the boundaries. Its
radius r0 and thickness h2 at rest result from the equilib-
rium between buoyancy and capillarity [7,8]. The size of
the bordering meniscus fixed by the capillary length is

small compared to the horizontal size. In all our experi-
ments we find h2 ’ 2 mm and r0 ’ 1:3 cm.
There is a range of forcing amplitude for which the

Faraday instability forms in the drop only. The resulting
waves are initially disordered and generate fluctuations of
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FIG. 1. (a) Vertical section of an isopropanol drop floating on
perfluorated oil in absence of oscillations. (b)–(d) A drop of
volume V2 ¼ 1:00� 0:02 ml forced at f0 ¼ 130 Hz for three
amplitudes of forcing. (b) Faraday waves of weak amplitude,
�m=g ¼ 3:28, (c) steady elongated state, �m=g ¼ 3:93 and
(d) highly perturbed state �m=g ¼ 6:48. (e) A drop of volume
V2 ¼ 10:0� 0:1 ml square when forced at f0 ¼ 160 Hz with
�m=g ¼ 4:90. The bars are 1 cm long.
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the drop boundary [Fig. 1(b)]. In return the fluctuations of
the boundary generate an unsteadiness of the wave pattern.
Two possible archetypes of evolution can then be observed
[Figs. 1 and 2] that depend on the fluids. We investigated
many pairs of immiscible fluids, having different viscosity
contrasts and wetting properties, and found only these two
possible behaviors.

In the first archetype, the system self-organizes by a
coevolution of the wave field and the boundaries so that
an equilibrium is reached [9]. The example shown in
Fig. 1 was obtained with isopropanol (density �2 ¼
785 kg=m3, viscosity �2 ¼ 1:8� 10�3 Pa � s and surface
tension against vapor �2 ¼ 24 mN=m) floating on perfluo-
rated oil (�1 ¼ 1850 kg=m3, �1 ¼ 26� 10�3 Pa � s and
�1 ¼ 15 mN=m). The measured interfacial tension is
�1;2 ¼ 6:3 mN=m.

In the second type of evolution the displacement of the
boundary due to the waves does not lead to equilibrium
[10]. The formation of parallel standing waves results into
a constantly increasing elongation of the drop into a snake-
like structure which breaks into fragments having a large
variety of dynamical behaviors. The example shown in
Fig. 2 was obtained with ethanol (�0

2 ¼ 789 kg=m3,

�0
2 ¼ 0:9� 10�3 Pa � s, �0

2 ¼ 23 mN=m) floating on sili-

con oil (�0
1 ¼ 965 kg=m3, �0

1 ¼ 100� 10�3 Pa � s and

�0
1 ¼ 20 mN=m). The measured interfacial tension is

�0
1;2 ¼ 0:7 mN=m.

The difference between the two regimes can be under-
stood by a dimensional analysis evaluating the ratio of the
destabilizing factor (the radiation pressure) to the restoring
one (capillary pressure) as will be discussed below.
We first characterize experimentally the former arche-

type as a function of the frequency and the forcing ampli-
tude. A phase diagram depicting the different states of the
system is shown in Fig. 3. When the forcing amplitude is
increased, Faraday waves appear in the drop above a
first onset (�m > �D

m). They form complex unsteady pat-
terns which deform the drop [Fig. 1(b)], its average
shape remaining circular. Above a second threshold �E

m

the waves strengthen and start organizing, resulting into an
elongation of the drop in the perpendicular direction.
Correlatively this elongation favors a further organization
of the waves. By a slow evolution the drop reaches a
stable elongated shape and the waves become steady too
[Fig. 1(c)]. They are perpendicular to the long sides of the
drop (as usual for Faraday waves in elongated cells). By
increasing the forcing the drop undergoes a further elon-
gation to a new steady state. The shape can be defined by
the ratio R of the length of the minor over the major axis of
the drop. Figure 4(a) shows the evolution of R as a function
of �m for various frequencies. Above a third threshold �HP

m ,
the waves become chaotic and the envelope of the domain
undergoes very large fluctuations [Fig. 1(d)]. Finally at a
fourth threshold �F

m Faraday waves form on the viscous
substrate. We cannot obtain the second archetype by in-
creasing the forcing amplitude. We measured the area A2

covered by the drop during this process and found that it
does not change. The observed wavelength is given by the
dispersion relation of gravity-capillary waves for the
Faraday frequency f0=2.
The first type of behavior can be understood as resulting

from the effect of the radiation pressure Pr [11] of the
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FIG. 2. The case of an ethanol drop of volume V0
2 ¼ 1:00�

0:02 ml deposited on silicon oil. (a) Sketch of the vertical section
of the floating drop in the absence of oscillations. (b) It is
circular at rest with area and thickness A0

2 ¼ 459� 5 mm2 and

h02 ¼ 2:2 mm respectively. (c)–(e) Three successive images

showing the temporal evolution of the drop when forced at f0 ¼
130 Hz with �m=g ¼ 7:00. The bar is 1 cm long.
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FIG. 3 (color online). Phase diagram of the different regimes
observed in the case of an isopropanol drop of volume
V2 ¼ 1:00� 0:02 ml deposited on perfluorated oil. The drop
area at rest is A2 ¼ 530� 10 mm2, its average thickness
h2 ¼ 1:9 mm. Circular (C), deformed (D), elongated (E), highly
perturbed (HP), and Faraday (F) instability in oil.
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surface waves distorting the boundaries of the pancake. We
thus seek stable solutions in which the radiation and hydro-
static pressures are balanced by capillarity. We assume an
unidirectional standing wave along the x axis, with small
thickness for the drop and small wavelength for the wave,
the initial radius of the drop being the length unit. The
small thickness assumption allows a lubrication approxi-
mation transforming the 3D boundary value problem in a
2D one while the small wavelength approximation allows
an average on larger length-scales. An asymptotic analysis
adapted from [12] shows that the function yðxÞ describing
the drop shape satisfies a two-dimensional Laplace law
modified by the radiation pressure along the normal. It is
a Riccati equation:

Ph þ Pr

y02ðxÞ
1þ y02ðxÞ ¼ ��2fð�Þ ddx

y0ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02ðxÞp
; (1)

where Ph is a term of hydrostatic pressure (assumed con-
stant for quasisteady boundary), fð�Þ depends on the wet-
ting angle and Pr is the radiation pressure

Pr ¼ �2

8

�1 � �2

�1

!2A2F2 (2)

with A the amplitude of the Faraday waves, ! ¼ �f0
the angular frequency and F ¼ eh1�h2ð1þ B coshkh2Þ �
B sinhkh1, with B ¼ �k=!2½ð�2 � �1Þ=�2g� �1;2k

2=
�1�, a factor that takes into account thickness effects and
waves transmission for a baroclinic mode in fluid 1, k being
the wave vector modulus. Using the volume conservation,
the parameters of Eq. (1) reduce only to one free parameter
responsible for the final equilibrium shape, that is the ratio
a ¼ Pr=Ph. In this case we have found explicit analytical
solutions of Eq. (1). The drop shape is given by

yðxÞ ¼ � 1

P0
h

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p log

�

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p ðcosP0

h

ffiffiffi

a
p

x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2�0 � sin2P0
h

ffiffiffi

a
p

x
q

Þ
�

(3)

with sin2�0 ¼ a=ð1þ aÞ and P0
h ¼ Ph=½�2fð�Þ�. The

conservation of the area gives P0
h ¼ ½logð1þ aÞ=

a
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p �1=2, being P0

h ¼ 1 at rest (Pr ¼ 0). When

R> 0:25 good fits of the experimental shapes are obtained
[Figs. 4(b) and 4(c)]. The evolution of the aspect ratio
R with forcing can also be obtained analytically

R ¼
log

�

ffiffiffi

a
p þ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p �

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p

arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=ð1þ aÞp
: (4)

We measured the amplitude A of the waves in the drops by

lateral zoomed-in films and checked that it varies as ð�m �
�D
mÞ1=2. Using it to evaluate Pr and thus a, we obtain fits of

Rð�mÞ for various frequencies [Fig. 4(a)]. The computed
shapes become inconsistent with the initial small wave-
length and small thickness hypothesis of the model when-
ever the radius of curvature at the tip of the computed shape
becomes small. For this reason the very elongated shapes
(R< 0:25) obtained with this model cannot account for
reality. Experimentally, we observe that the shape of the tip
becomes fixed while the drop keeps elongating, the curva-
ture radius of the tip being of the order of the wavelength.
We can now turn to the second archetype. The main

characteristic is that ethanol is wetted by silicon oil. At rest
an oil film is observed to cover the upper surface of the
drop [Fig. 2(a)]. The instability in ethanol appears in a
subcritical way; i.e., large amplitude waves form at thresh-
old. These waves stretch the drop [Fig. 2(c)] but there is no
convergence towards a final stable shape. There is no
theory for this dynamical regime yet.
However, its existence can be understood by dimen-

sional analysis. We use a0 ¼ Pr=P
0
h, the ratio of the esti-

mated wave radiation pressure [Eq. (2)] to the 2D pressure
due to capillary effects in the circular drop at rest. For
drops of centimetric size and Faraday waves of the usually
observed amplitude this analysis applied to the first arche-
type gives a0 ’ 0:1. In the second archetype, because of the
wetting, the capillary tension is the interfacial one �0

1;2 ¼
0:7 mN=m. As a result we find a00 ’ 2. While in the first
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FIG. 4 (color online). (a) Evolution of the aspect ratio of an
elongated isopropanol drop on perfluorated oil as a function of
the forcing amplitude for different frequencies. The lines are the
fits by Eq. (4). (b), (c) Photographs of two drops in an elongated
state at f0 ¼ 130 Hz for �m=g ¼ 3:97 and R ¼ 0:42 (b) and
�m=g ¼ 4:62 and R ¼ 0:28 (c) and the predicted shapes by the
corresponding solutions [Eq. (3)]. The bar is 1 cm long.
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case the pressure exerted by the waves is only a perturba-
tion of the capillary equilibrium of the drop, in the second
this radiation pressure exceeds the possible response of
capillary forces so that no steady solution can be reached.

The elongation is followed by buckling [Fig. 2(d)] then
breaking into several fragments [Figs. 2(e) and 5(a)]. We
measured the total area A0

2 covered by the pattern and
found that it increases with forcing, proving that the drops
are stretched by the waves (their thickness decreases). By
buckling large fragments can take a croissant or a horse-
shoe shapes [Fig. 5(d)]. These shapes are stationary but
propagate in the direction of the curvature. This is one
more example of self-propagation by a spontaneous sym-
metry breaking [13]. The velocity is constant and a crois-
sant (or a horseshoe) could move indefinitely in an infinite
bath. In practice a bath of finite size is covered with moving
and motionless fragments [Fig. 5(a)] that keep colliding,
merging and splitting. The global aspect is reminiscent of
the interplay of structures obtained in cellular automata
such as Conway’s game of life [14]. Very small fragments
are observed to remain steady with a stationary shape that
recalls the elongated one of the first regime [Fig. 5(b)].
This possibility of a steady regime for small drops can be
understood by the dimensional analysis: a0 becomes
smaller when the radius of the drop at rest is very small.

A remarkable feature of the snakelike structure is that
they have constant transverse widths and tip radii, both
being of the order of the Faraday wavelength. Their
stretching and instabilities affect mostly the middle of their
length. The buckling could be due to the generation of a
streaming flow [15] that has been already studied in
Faraday instability [16]. This streaming effect could also

be responsible for their motion on the substrate. The in-
vestigation of the resulting dynamical regimes is beyond
the scope of this Letter.
We have found that, by slow dynamics, a mutual adap-

tation is possible between an instability and its boundaries.
This phenomenon is related to the self-tuning of oscilla-
tors. In optical cavities the radiation pressure was shown
[17] to create a coupling between the mirrors degrees of
freedom and the optical field. Similarly, a forced mechani-
cal oscillator with an additional degree of freedom [18]
exhibits a slow drift by which it can self-tune. The present
phenomenon is more general and should show up in other
type of instabilities confined in adaptable boundaries.
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