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We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water

between independently rotating cylinders for all regions of the (�1,�2) parameter space at high Reynolds

numbers, where �1 (�2) is the inner (outer) cylinder angular velocity. We find that the Rossby number

Ro ¼ ð�1 ��2Þ=�2 fully determines the state and torque G as compared to GðRo ¼ 1Þ � G1. The
ratio G=G1 is a linear function of Ro�1 in four sections of the parameter space. For flows with radially

increasing angular momentum, our measured torques greatly exceed those of previous experiments

[Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron.

Astrophys. 347, 734 (1999)].

DOI: 10.1103/PhysRevLett.106.024501 PACS numbers: 47.27.N�, 47.27.Jv, 47.32.Ef, 52.72.+v

Rapidly rotating shear flows are ubiquitous in geophysi-
cal and astrophysical settings such as planetary atmos-
pheres, stellar interiors, and accretion disks. In order for
essential fundamental processes to occur, like matter
inflow towards compact objects [1], there must be an
exchange of angular momentum through such flows.
Determining the flux of angular momentum in rotating
shear flows is difficult and has been actively studied
[2–9] since the initial measurements of Wendt [10] and
Taylor [11]. While shear tends to destabilize fluid flows,
rotation stabilizes them whenever angular momentum in-
creases radially outward (dL=dr > 0, the Rayleigh crite-
rion [12]); however, shear turbulence can occur even in
Rayleigh-stable systems [13]. Most astrophysical flows are
Rayleigh stable, which in the absence of other instabilities
cannot transport angular momentum efficiently enough to
allow for the breadth of observed phenomena.

The question remains as to how astrophysical objects
transport angular momentum at the observed rates [1].
It is widely accepted that turbulence is mediated by an
instability, which enhances angular momentum transport;
however, the particular driving mechanism remains con-
troversial. In the case of electrically conducting accretion
disks, magnetic fields can give rise to the linear magneto-
rotational instability (MRI) [14]. The MRI increases the
flux of angular momentum, but it is still unknown if (i) it is
the only instability and (ii) it is sufficient to produce the
observed angular momentum transport.

Ji et al. [7] measured the flux of angular momentum in
Taylor-Couette flow between two cylinders that rotated
with angular velocities �1 and �2 for the inner and outer
boundaries, respectively. They focused on ‘‘quasi-
Keplerian’’ flows in water, where the angular velocity
decreases radially (d�=dr < 0) while the angular momen-
tum increases (dL=dr > 0), as in many astrophysical
flows. Their measurements of the flux of angular
momentum, inferred from velocity measurements,

were indistinguishable from those in solid-body rotation
(�1 ¼ �2), where the flux is zero. Ji et al. concluded that
there was no hydrodynamic instability and that nonmag-
netic, quasi-Keplerian flows at Reynolds numbers up to
2� 106 are ‘‘essentially steady.’’ These results are at odds
with the analysis of Dubrulle et al. [6], who used prior
velocity measurements to infer that the flux of angular
momentum is nonzero for Rayleigh-stable flows. How-
ever, there has yet to be a study that directly measures
the flux of angular momentum in all portions of the
(�1, �2) parameter space. Furthermore, Ji et al. could
not quantify the flux for quasi-Keplerian flows since the
random errors in their measurements exceeded the mea-
sured values.
In this Letter, we characterize the flux of angular mo-

mentum (torque) in Taylor-Couette flow between indepen-
dently rotating cylinders for all regions of the parameter
space up to Reynolds numbers Re ¼ ð�1 ��2Þðb� aÞ�
ðaþ bÞ=2� ¼ 4:4� 106, where � is the kinematic viscos-
ity and a (b) is the inner (outer) radius. Rather than infer-
ring the torque from velocity measurements, as in [7], we
directly measure the torque required to drive the inner
cylinder [2]. The precision of our measurements allows
us to distinguish between solid-body rotation and other
flow states observed, in contrast to Ref. [7].
We partition the experimental parameter space (Fig. 1)

into four regions. The regions are defined by the Rossby
number, which we claim is the main control parameter for
the dynamics:

Ro � ð�1 ��2Þ=�2 ¼ ðRe1=�Re2Þ � 1; (1)

where � ¼ a=b, Re1 ¼ �1aðb� aÞ=�, and Re2 ¼
�2bðb� aÞ=� are the radius ratio and inner and outer
cylinder Reynolds numbers. The boundaries corotate in
region I with 0 � �1 <�2. Region II also has corotation
with radially increasing (decreasing) angular momentum L
(angular velocity �), as in quasi-Keplerian flows.
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Regions II and III are divided by the Rayleigh stability
criterion dL=dr ¼ 0. Region IV is characterized by coun-
terrotation with �4< Ro<�1. Regions I and II are
Rayleigh stable and are separated at Ro ¼ 0 (solid-body
rotation). Regions III and IV are linearly unstable since
dL=dr < 0. The division between regions III and IV is a
result of the observation of a maximum in the measured
torque at Ro ¼ �4. The dynamics are symmetric under
negating both�1 and�2; therefore, regions I–IV describe
the entire Taylor-Couette parameter space.

Our experiments use water as the working fluid and are
conducted in the apparatus constructed by Lathrop et al.
[2], which has been modified to allow the outer cylinder
to rotate independently. The acrylic outer cylinder used in
previous experiments [2,3] has been replaced by an ano-
dized aluminum cylinder with the same inner radius b ¼
22:085 cm and length L ¼ 69:50 cm. The inner cylinder
is stainless steel with a radius a ¼ 16:000 cm yielding a
radius ratio � ¼ a=b ¼ 0:7245 and an aspect ratio � ¼
L=ðb� aÞ ¼ 11:47. The inner cylinder is rotated up to
�1=2� ¼ 20 s�1 while the outer cylinder may be rotated
in either direction up to j�2=2�j ¼ 10 s�1. Both angular
velocities are measured precisely by shaft encoders and
controlled to within 0.2% of the set value.

The axial boundaries rotate with the outer cylinder,
although the ideal Couette geometry is unbounded axially.
To avoid end effects in our torque measurements, the inner
cylinder is divided axially into three sections of lengths
15.69, 40.64, and 15.69 cm (see Fig. 3 of [2]). Only the
central section of the inner cylinder senses the torque of

the fluid as described in Ref. [2]. Therefore 2:58ðb� aÞ
from each of the axial boundaries, where the secondary
circulation setup by finite boundaries (Ekman pumping) is
strongest, are avoided in the torque measurements.
The local wall shear stress is measured at the outer

boundary using a flush-mounted hot film probe. The probe
is located at the midheight of the experiment. The mea-
surements are performed in the constant temperature mode
using a Dantec mini-CTA anemometer. The frequency
response of the probe exceeds our sampling rate of
10 kHz. The shear-stress measurements are calibrated
in situ using the method described in Ref. [2].
The desired accuracy of our measurements requires that

the temperature of the water be precisely controlled. In
contrast to prior experiments [2,3] where the system was
cooled at the axial boundaries, we control the temperature
through the outer cylinder. This procedure is superior
owing to the 6.5 fold increase in temperature-controlled
surface area. Furthermore, the working fluid is now
temperature-controlled along the entire axial length of
the experiment. This is particularly important for the flows
in regions I and II of the parameter space, where mixing is
greatly reduced. In all of our measurements the tempera-
ture is controlled to within 0:02 �C of 50 �C, yielding a
kinematic fluid viscosity of � ¼ 0:0055 cm2=s, except for
Re> 2� 106 where T ¼ 90 �C and � ¼ 0:0032 cm2=s.
This control algorithm and temperature range would not
be possible with an acrylic outer cylinder, owing to the
poor thermal properties compared to those of aluminum.
We study the scaling of the torque as a function of Re for

several values of Ro. The measured torque � is made
dimensionless by defining G ¼ �=��2Lc, where � is the
fluid density and Lc the length of the torque-sensing central
section of the inner cylinder. Our measured values ofG are
shown in Fig. 2(a). We note that both Re andG are negative
in region I, and we therefore plot their absolute values. We
compare our data to the best fit ofGðRo ¼ 1Þ (solid curve)
given in Ref. [3], which is well described by the following:

Re1
ffiffiffiffiffiffiffiffi

G1
p ¼ 1:56 log

ffiffiffiffiffiffiffiffi

G1
p � 1:83: (2)

Our measurements of G obey the scaling observed in
previous experiments for Ro ¼ 1 [2,3], even above the
previous maximum of Re ¼ 1:2� 106. However, depend-
ing upon Ro, the value ofG for a given Re may be higher or
lower thanG1 [6,9]. The main observed dependence on Ro
is a vertical shift in this representation.
To determine this shift inGwith Ro, we measureG=G1,

as in Ref. [6], as a function of Ro�1, where G1 is given in
Eq. (2) [3]. Figure 2(b) shows that G=G1 is essentially
constant for each value of Ro. Therefore, the value of
Ro fully determines the basic state of the flow, which
then scales with Re in the same manner as the case of
outer-stationary Taylor-Couette flow (Ro ¼ 1).
The behavior of G=G1 is distinct in the four regions of

the parameter space. For Rayleigh-stable flows (regions I
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FIG. 1 (color online). Our experiments span a large range of
the (Re2, Re1) parameter space, which we divide into regions.
Region I (blue diamonds) is defined as �1 � Ro< 0. Region II
(red squares) has 0< Ro<��2 � 1, where Ro ¼ ��2 � 1 de-
fines the Rayleigh stability criterion [12]. Region III (black
circles) is for Ro<�4 and ��2 � 1< Ro. Finally, region IV
(green triangles) has�4< Ro<�1. Data are not acquired very
near Ro ¼ 0, since the torques are comparable to our measure-
ment precision of 0.01 Nm (G� 108 at 50 �C).
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and II), G=G1 is less than 0.22. On the other hand, for
�0:37< Ro�1 < 0 the torque is enhanced. Since G=G1
scales as Ro�1 within each region, we perform linear
regressions of G=G1 as a function of Ro�1. The resulting
functions are shown as solid lines in Fig. 2(b):

region I : G=G1 ¼ 0:078Ro�1 þ 0:27; (3)

region II : G=G1 ¼ 0:17� 0:05; (4)

region III : G=G1 ¼ �0:95Ro�1 þ 1:00; (5)

region IV : G=G1 ¼ 2:24Ro�1 þ 1:83: (6)

In addition to the distinct torque scaling in regions I–IV,
the wall shear-stress spectra also show marked changes
with Ro. Figure 3 shows a spectrogram for �2< Ro<
2:1. For Rayleigh-stable flows (� 1< Ro< 0:905), the
system is characterized by narrow-band, weak shear-stress
fluctuations. The fluctuations are stronger in region II,
which also shows strong wave modes near Ro ¼ 0:5.
Region III only has strong, broadband fluctuations for
Ro> 0:95, even though the system becomes linearly un-
stable at Ro ¼ 0:905 in the case of vanishing viscosity.
Finally, the spectra for flows in region IV are also broad-
band but with much stronger wave modes evident.
Our measurements of the dimensionless torque G and

wall shear-stress spectra indicate that the dominant control
parameter for rotating shear flows is the Rossby number
Ro. We have not observed any transitions or evidence for
nonlinear instabilities with increasing Re in regions I, III,
or IV, although we have indications of hysteresis in
region II. This likely indicates that quasi-Keplerian flows
can be nonlinearly unstable, but more systematic studies
are needed to determine if this is indeed the case.
In Ref. [8] the variations of the torque with rotation rates

are modeled using exact relations derived from the Navier-
Stokes equations and assumptions about the torque contri-
butions from the radial and vertical velocity fields (the
‘‘wind’’). Our observed variations with Ro suggest that,
while the exact relations in Ref. [8] contain only �1–�2,
there is a dependence of the wind on Ro. The data pre-
sented here may be used to determine this dependence and
provide testable predictions for the velocity fields.
Ji et al. [7] did not directly measure G, but instead used

their velocity measurements to determine the parameter �,
which has been used to interpret angular momentum
transport in astrophysical objects [4–6]. In this prescription
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FIG. 2 (color online). Experimental measurements of the di-
mensionless torque G as a function of (a) Re and (b) Ro�1 with
the symbols defined in Fig. 1. The solid line in (a) represents the
fit G1 for Ro ¼ 1 given in Eq. (2) [3]. The solid lines in (b)
correspond to the fits given in Eqs. (3)–(6).

FIG. 3 (color online). Fluctuations in the wall shear stress
strongly depend upon Ro. The logarithmic spectral power den-
sity is indicated by color, and the spectral frequency ! is
normalized by �2=2� ¼ 8:22 s�1. The experimentally inacces-
sible range of �1:25< Ro< 0:75 is shown as white.
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� � v0
�v

0
r=ð �v2

�q
2Þ, where overbars indicate mean quanti-

ties, v� is the azimuthal velocity, v0
� ¼ v� � �v�, v

0
r ¼

vr � �vr, and q ¼ �@ ln�=@ lnr. This model describes
angular momentum transport as a diffusive process with
a diffusivity �turb ¼ �jr3@�=@rj. Thus, for a given �ðrÞ,
� determines the transport of angular momentum, with
larger values of � corresponding to larger fluxes of L. For
quasi-Keplerian flows (region II), Ji et al. measured � ¼
ð0:72� 2:7Þ � 10�6. This value is smaller than the value
of � ¼ ð1:5� 0:5Þ � 10�5 determined by Richard and
Zahn [4] for Ro ¼ �1 (�1 ¼ 0). Ji et al. attributed the
disparity to Ekman circulation, which is reduced in their
experiments by independently controlling the angular ve-
locity of the axial boundary [7].

To determine � from our measurements of G we use the
expression given by Dubrulle et al. [6],

� ¼ 1

2�
R4
C

G

Re2
Slam
�S

; (7)

where RC ¼ 2ðb� aÞ=ðbþ aÞ, and we take Slam=S ¼ 3
from [6]. Our measured values of � are shown in Fig. 4.
We note that � is proportional to the skin friction coeffi-
cient cf ¼ G=Re2, which is denoted on the right vertical

axis. The values of � are shifted vertically for a given
Ro by the same factor as G=G1 shown in Fig. 2(b). For
Ro ¼ �1 we measure � ¼ ð1:84� 0:03Þ � 10�5, which
agrees with the value determined in Ref. [4]. For the flows
in region II we determine an average value of �� ¼ ð1:7�
0:2Þ � 10�5, which is markedly higher than the value given
in Ref. [7]. For Rayleigh-unstable flows, though, Ji et al.
report �> 10�3 [7], whereas our values span 2� 10�5 <
�< 2� 10�4.

In conclusion, we have presented the first characteriza-
tion of the flux of angular momentum (torque) between
independently rotating cylinders for all regions of parame-
ter space. The reduction or enhancement of the torque
G=G1 at a given Reynolds number only depends upon
the Rossby number Ro. The Ro dependence of G=G1 is
well described by Eqs. (3)–(6). In contrast to Ref. [7] but
in agreement with Ref. [4], our measurements of �, which
may be used to model angular momentum transport, are
nonzero for Rayleigh-stable flows. This disparity likely
indicates that multiple states are possible for Rayleigh-
stable flows, with our measurements representing a
‘‘turbulent state’’ and those in Ref. [7] a ‘‘laminar state.’’
This is particularly important for astrophysical flows where
such nonlinear instability could explain the observed an-
gular momentum transport. Systematically perturbing
Rayleigh-stable flows while measuring the torque could
be used to directly test for nonlinear instabilities.
We would like to thank B. Eckhardt, Michael E. Fisher,

C. Kalelkar, D. Lohse, D. Martin, H. L. Swinney, and
D. S. Zimmerman, and acknowledge the support of Grant
No. NSF-DMR 0906109.
Note added in proof.—Recently, Detlef Lohse made us

aware of the parallel work [15], independently confirming
the peak in the dimensionless torque as a function of Ro.
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FIG. 4 (color online). Scaling of �, given in Eq. (7), and the
skin friction coefficient cf ¼ G=Re2 with Re. The symbols

correspond to the portions of parameter space defined in Fig. 1.
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