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Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To

address this issue experimentally, we utilize the analogy between the propagation of fields around black

holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we

create a region of high velocity over the obstacle that can include surface wave horizons. Long waves

propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is

the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our

measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion

process for this system. Given the close relationship between stimulated and spontaneous emission, our

findings attest to the generality of the Hawking process.
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One of the most striking findings of general relativity is
the prediction of black holes, accessible regions of no
escape surrounded by an event horizon. In the early
1970s, Hawking suggested that black holes evaporate via
a quantum instability [1]. The study of classical and quan-
tum fields around black holes shows that a pair of field
excitations at temporal frequency f are created, with posi-
tive and negative norm amplitudes �f, �f (Bugoliubov

coefficients) related by,

j�fj2
j�fj2

¼ exp

��4�2f

gH

�
(1)

where gH ¼ 1035 ½kg=s�=M is the surface gravity of the
black hole with mass M [1,2]. Positive norm modes are
emitted, while negative ones are absorbed by the black
hole, effectively reducing its mass. A comparison of (1)
with the Boltzmann-distribution allows one to associate a

temperature T with the black hole, T ¼ 6� 10�8 M�
M ½K�,

where M� is a solar mass, the smallest mass for an astro-
physical black hole. Thus black hole evaporation is clearly
difficult to observe directly [3].

In 1981 Unruh showed [4] (see also [3,5]), that there is a
mathematical analogy between the behavior of classical
and quantum fields in the vicinity of black hole horizons
and sound waves in trans-sonic fluid flows and raised the
possibility of doing experiments with these analogues. In
2002 Schützhold and Unruh argued that surface waves on
an open channel flow with varying depth are a possible toy
model for black hole experiments [6]. A difficulty with
Hawking’s derivation is its apparent reliance on arbitrarily
high frequencies (the trans-Planckian problem [7–10]).
The dispersion relation of gravity waves creates a natural
physical short-wavelength cutoff, which obviates this dif-
ficulty. Thus the dependence of the Hawking effect on the
high-frequency behavior of the theory can be tested in such

analogue experiments [9]. While numerical studies indi-
cate that the effect is independent of short-wavelength
physics, experimental verification of this would strengthen
our faith in the process. The presence of thermal emission
in our physical system, which exhibits turbulence, viscos-
ity, and nonlinearities, would indicate the generic nature of
the Hawking thermal process.
The excitation spectrum of gravity waves on a slowly

varying background flow is well understood and, neglect-
ing surface tension and viscosity, has a dispersion relation
given by f2 ¼ ðgk=2�Þ tanhð2�khÞ, with the frequency
f ¼ 1=�, where � is the wave period, the wave number k ¼
1=�, where � is the wavelength, g is the gravitational
acceleration, and h the depth of the fluid. For 2�kh < 1
the dispersion relation can be approximated by f ¼ ffiffiffiffiffiffi

gh
p

k.
These shallow water waves have both group and phase
speed approximately equal to

ffiffiffiffiffiffi
gh

p
. For 2�kh > 1, the

dispersion relation is approximated by f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk=2�

p
. The

group speed of these deep-water waves is approximately
half the phase speed, both vary as the square root of the
wavelength, and, for a given water depth, both are less than
the speed of shallow water waves.
In [6] it was argued that the equation of motion of

shallow water waves can be cast into a wave equation on
a curved spacetime background if the speed of the back-
ground flow varies. Assuming a steady, incompressible
flow, the velocity is vðxÞ ¼ q=hðxÞ, where the two-
dimensional flow rate per unit width q is fixed. The dis-
persion relation in the presence of a nonzero background

velocity becomes ðfþ vkÞ2 ¼ ðgk2�Þ tanhð2�khÞ. In Fig. 1,

the dispersion relation is plotted for a flow typical of our
experiments. Only the branch corresponding to waves
propagating against the flow is plotted. For any linear field,
where � is the conjugate momentum to �, there is a
conserved norm for complex solutions, h�1; �2i ¼ i

2 �Rð��
1�2 ���

1�2Þdx, which has an indefinite sign. The
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positive (negative) norm are associated with creation (an-
nihilation) operators. For low frequencies, there are three
possible waves, which we denote according to wave num-
ber. The first, kþin , is a shallow water wave with both

positive phase and group velocities, and also positive
norm, and corresponds to the wave that we generate in
our experiments. The second, kþout, has positive phase ve-
locity, negative group velocity, and positive norm. The
third, k�out, has both negative phase and group velocities,
and lies on the negative norm branch. The second and third
are both deep-water waves. In our experiment, the gener-
ated shallow water waves move into a region where they
are blocked by an increasing countercurrent [11–14], and
converted into the other two deep-water waves [15]. The
goals of our experiment were to observe pair-wave crea-
tion, and to measure the relative amplitudes of the outgoing
positive and negative norm modes to test the validity
of Eq. (1).

It is this blocking of the ingoing waves that creates the
analogy with the white hole horizon in general relativity.
That is, there is a region that the shallow water waves
cannot access, just as light cannot enter a white hole
horizon. Note that while our experiment is on white hole
horizon analogues, they are equivalent to the time inverse
of black hole analogues.

Our experiments were performed in a 6.2 m long, 0.15 m
wide and 0.48 m deep flume, and were partly motivated by
experiments in similar flumes [11–14,16,17]. We created a
spatially varying background flow by placing a 1.55 m long
and 0.106 m high obstacle in the flume. This obstacle was
modeled after an airplane wing with a flat top and a
maximum downstream slope of 5.2� designed to prevent
flow separation. We used particle image velocimetry [18]
to determine q, and to verify the absence of flow separa-
tion. Shallow water waves of approximately 2 mm ampli-
tude were generated 2 m downstream of the obstacle, by a
vertically oscillating mesh, which partially blocked the
flow as it moved in and out of the water. The intake

reservoir had flow straighteners and conditioners to dissi-
pate surface waves produced by the ingoing flow.
We measured and analyzed the variations in water sur-

face height using essentially the same techniques as in
[19]. A thin strip of the water surface was illuminated by
a 0.5 W green (532 nm) laser light sheet created by a
Powell lens. The water contained rhodamine-WT dye to
create a sharp (< 0:2 mm) surface maximum in the
fluorescence intensity which was photographed with a
high-resolution (1080 p) monochrome camera. Each pixel
corresponded to 1.3 mm on the water surface, the imaged
area was 2 m wide and 0.3 m high, and the sampling rate
was 20 Hz. We interpolated the intensity of light between
neighboring pixels to determine the height of the water
surface to subpixel accuracy (< 0:3 mm).
To detect the stimulated Hawking process, we sent

shallow water waves toward the effective white hole hori-
zon, which sits on the lee side of the obstacle. We con-
ducted a series of experiments, with q ¼ 0:045 m2=s and
h ¼ 0:194 m, and examined 9 different ingoing frequen-
cies between 0.02 and 0.67 Hz, with corresponding still
water wavelengths between 69 and 2.1 m. This surface was
imaged at 20 frames per second, for about 200 s. In all
cases we analyzed a period of time which was an exact
multiple of the period of the ingoing wave, allowing us to
carry out sharp temporal frequency filtering of the signals
(i.e., eliminating spectral leakage).
The analysis of the surface wave data was facilitated by

introducing the convective derivative operator @t þ vðxÞ@x.
We redefine the spatial coordinate using, � ¼ R

0
dx
vðxÞ ,

where x is the distance downstream from the right-hand
edge of the flat portion of the obstacle. The � coordinate
has dimensions of time, and its associated wave number �
has units of Hz. The convective derivative becomes @t þ
@�, or, in Fourier transform space, fþ �. This is the term
that enters the conserved norm. From Equations (35), (36)
and (87) of Ref. [6] we find that the conserved norm has
the form

Z jAðf; �Þj2
fþ �

d�; (2)

where Aðf; �Þ is the t� �-Fourier transform of the vertical
displacement of the wave. In using this coordinate system
the outgoing waves have an almost uniform wavelength
even over the obstacle slope.
We will illustrate the pair-wave creation process by

presenting the results for fin ¼ 0:185 Hz. Here we ana-
lyzed images from exactly 18 cycles, measuring the free
surface along approximately 2 m of the flow including the
obstacle. In Fig. 2(a) we plot the wave characteristics
(amplitude as function of t and �) filtered to give only the
temporal 0.185 Hz band. Figs. 2(b) and 2(c) are the char-
acteristic plots where we further filter to include only � <
�1 Hz and � > 1 Hz respectively. These are the negative
and positive norm outgoing components without the central

FIG. 1 (color online). Conversion process. Dispersion relation
for waves propagating against a flow typical of our experiments.
A shallow water wave, kþin , sent upstream, is blocked by the flow

and converted to a pair of deep-water waves (kþout and k�out) that
are swept downstream.
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peak of the ingoing wave (because of their very long wave-
lengths and the rapid change in wavelength as they ascend
the slope, the incoming waves have a very broad Fourier
transform). Recall that since we are only interested in
counter-propagating waves, we defined positive phase
and group speeds as pointing to the left. As expected
from the dispersion relationship, see Fig. 1, the negative
norm waves have negative phase velocity, while the posi-
tive norm waves have positive phase velocity. The complex
structure in the characteristics of Fig. 2(a) arises because of
the interference between the three components, the original
ingoing wave and the positive and negative norm outgoing
waves. In Fig. 2(c), we see that the ingoing wave is blocked
around � ¼ 0, with only a small component penetrating
into the region over the top of the obstacle � < 0.

Our key results are presented in Fig. 3. Figure 3(a) shows
the amplitude of the spatial Fourier transform at three
selected ingoing frequencies. As the frequency increases,
the ratio of the negative norm peak to positive norm peak
decreases. Furthermore, the location of the positive norm
peak moves slightly toward zero as the frequency in-
creases, while the negative norm peak moves away from
zero, as expected from the location of the allowed spatial

wavenumber from the dispersion plot; see Fig. 1. The red
curve in Fig. 3(a) shows the Fourier transform in the
adjacent temporal frequency band for the sample case of
0.185 Hz. This is a representation of the noise, and is a
factor of at least 10 lower than the signal in the 0.185
frequency band.
The crucial question is the following: Do the integrals of

the negative to positive norm outgoing waves scale as
predicted by the thermal hypothesis of Eq. (1)? This is
shown to be the case in Fig. 3(b), where the norm ratios are
plotted as a function of ingoing frequency. To evaluate
j�fj2 and j�fj2 we integrate

R jAðf; �Þj2=ðfþ �Þd� over

the respective peaks. In Fig. 3(b) the points represent the
natural log of the ratios of these areas for each of the input
frequencies we tested. The thermal hypothesis is strongly
supported, with linear regression giving an inverse slope of
0.12 Hz and an offset close to zero. The slope corresponds
to a temperature of T ¼ 6� 10�12 K.
We see from Figs. 2(b) and 2(c) that the region of ‘‘wave

blocking’’, where the ingoing wave is converted to a pair of
outgoing waves, is not a phase velocity horizon (where the
phase velocity in the laboratory frame goes to zero) at this

FIG. 2 (color online). Pair-wave creation. Demonstration of
pair-wave conversion of an ingoing frequency of 0.185 Hz:
(a) Filtered wave characteristic containing only the ingoing
frequency band. (b) and (c) wave characteristics for filtered
negative and positive norm modes. The colors represent the
amplitudes of the waves; see color bars.

FIG. 3 (color online). Amplitudes and thermal spectrum.
(a) Absolute value of three different ingoing frequency bands,
and typical noise level (red line). (b) Natural log ratio R of
negative and positive norm components [Eq. (1)] in between 0.02
and 0.67 Hz (black stars), and linear least-squares fit (black line).
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frequency. The conversion seems to take place at the group
velocity horizon (blocking) as noticed in Ref. [7]. This,
together with the loss of irrotational flow near the horizon,
and absence of a dependable theory of surface waves over
an uneven bottom make prediction of the temperature from
the fluid flow difficult. Our estimates give us a value some-
where between about 0.08 and 0.18 Hz. What is important
is that the conversion process does exhibit the thermal form
predicted for the Hawking process.

We have conducted a series of experiments which veri-
fied the thermal nature of the stimulated Hawking process
at a white hole horizon in a fluid analogue gravity system.
The thermal emission process is generic, it survives fluid-
dynamical complications, such as turbulence and viscosity
that are not part of the analogy. The ratio is thermal despite
the different dispersion relation from that used by Hawking
in his black hole derivation. It is thermal even though the
ingoing frequencies do not experience a phase velocity
horizon. However the in-going waves exhibit a group
velocity horizon in this system, see Fig. 2, which is usually
considered necessary, and as it seems sufficient, for the
thermal effect. This increases our trust in the ultraviolet
independence of the effect. When the thermal emission
was originally discovered by Hawking, it was believed to
be a feature peculiar to black holes. Our experiments, and
prior numerical work [5,16], demonstrate that this phe-
nomenon seems to be ubiquitous, and not something that
relies on quantum gravity or Planck-scale physics.

While our experiments measure only the stimulated
emission from this white hole analogue, it has been known
since Einstein’s work (see also Haus and Mullen [20]) that
there is a very close relation between spontaneous and
stimulated emission from a quantum system. For a linear
system (which our small surface waves are), the classical
behavior (amplification and Bugoliubov coefficients) com-
pletely determine the quantum behavior and quantum noise
(which the Hawking radiation is). Furthermore, the time
reversal invariance of the theory leads to the equivalence of
black and white hole horizons. It would still be exciting to
measure the spontaneous emission from a black hole.
While finding small black holes to test the prediction
directly is beyond experimental reach, such measurements
might be achievable in other analogue models, like Bose
Einstein condensates, or optical fibre systems [21–24].
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