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We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-

Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that,

for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be

thought of as the ‘‘square root’’ of the massive Klein-Gordon-type equation. Using this fact, we establish a

simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new

examples of types D and N solutions to NMG.
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The continuing search for a consistent theory of
quantum gravity has stimulated many investigators to ex-
plore gravity models in three dimensions, where one
may hope to have less austere ultraviolet (UV) divergences
in perturbation theory. Ordinary general relativity (GR)
in three dimensions becomes dynamically trivial as it
does not propagate any physical degrees of freedom [1].
Remarkably, this problem can be cured by a particular
extension of GR. There exist two popular approaches to
such an extension. (i) The Einstein-Hilbert (EH) action is
supplemented with a parity-violating gravitational Chern-
Simons term. The resulting theory is known as topologi-
cally massive gravity [2,3]. (ii) The EH action is extended
by adding a particular higher-derivative correction term to
it. This gives rise to a novel theory of three-dimensional
massive gravity, known as new massive gravity [4].

In contrast to topologically massive gravity (TMG), new
massive gravity is a parity-preserving theory. At the line-
arized level it becomes equivalent to the Fierz-Pauli theory
for a free massive graviton in three dimensions, thereby
sharing its unitary property [4] (see also [5–7]). It was
argued that the theory in its pure quadratic curvature limit
is both unitary and power-counting UV finite [6], thereby
violating standard paradigm of its ‘‘cousins’’ in four di-
mensions [8]. Further developments include exact solu-
tions to new massive gravity (NMG). In particular, it was
shown that Banados-Teitelboim-Zanelli (BTZ) [9] and
warped anti-–de Sitter (AdS3) black hole solutions of
TMG persist in cosmological NMG as well [4,10]. The
general AdS3-wave solution of NMG was found in [11]
and Bianchi type IX homogeneous space solutions were
studied in [12].

An analysis of NMG in the context of the AdS3=CFT2

correspondence reveals the bulk-boundary unitarity con-
flict: the unitarity in the bulk implies a negative central
charge for the boundary conformal field theory, CFT2

[13–15]. In TMG, with the ‘‘right’’ sign EH term in the
action, this conflict is resolved at a ‘‘chiral’’ point, at which
the Compton wavelength of the massive graviton becomes
equal to the radius of the AdS3 space [16]. However, for

NMG a similar strategy of the chiral point shows that both
the energy of massive bulk modes and the central charges
of the dual CFT2 vanish [14,15]. Thus, the theory becomes
trivial at this point under the standard Brown-Henneaux
boundary conditions [17] (see also [18–21] for some fur-
ther investigations). In light of all these developments, it is
of great importance to undertake an exhaustive study of
exact solutions to NMG in hope of finding a stable vacuum
for a consistent theory of quantum gravity in three
dimensions.
The purpose of this Letter is to give a novel description

of NMG in terms of a first-order differential operator
(appearing in TMG) acting on the traceless Ricci tensor
and to establish a simple framework for mapping all
Petrov-Segre types D and N solutions of TMG into
NMG. We also present new examples of exact solutions
which are only inherent in NMG. These are type D solu-
tions with constant scalar curvature (Bianchi types VI0 and
VII0 solutions), a type D solution with nonconstant scalar
curvature (a new extremal black hole type solution) as well
as a type N solution that belongs to a class of Kundt
spacetimes.
We begin by recalling the field equations of NMG [4]

R�� � 1

2
Rg�� þ �g�� � 1

2m2
K�� ¼ 0; (1)

where R ¼ g��R�� is the three-dimensional Ricci scalar,

� is a cosmological parameter, m is a mass parameter,
and K�� is a symmetric and covariantly conserved tensor

given by

K�� ¼ 2r2R�� � 1

2
ðr�r�Rþ g��r2RÞ � 8R�

�R��

þ 9

2
RR�� þ g��

�
3R��R

�� � 13

8
R2

�
: (2)

Herer� is the covariant derivative operator with respect to

the spacetime metric andr2 ¼ r�r�. The trace of Eq. (1)

gives
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R��R
�� � 3

8
R2 þm2R ¼ 6m2�: (3)

We also recall the field equations of TMG [2,3],

R�� � 1

2
Rg�� þ�g�� þ 1

�
C�� ¼ 0; (4)

where� is the cosmological constant,� is a mass parame-
ter, and C�� is the Cotton tensor,

C�� ¼ ���� r�

�
R�� � 1

4
g��R

�
; (5)

which is a symmetric, traceless and covariantly conserved
quantity. Here ���� is the Levi-Civita tensor given by the

relation ���� ¼ ffiffiffiffiffiffiffi�g
p

"���, "012 ¼ 1.

The trace of Eq. (4) yields

R ¼ 6�: (6)

Using the traceless Ricci tensor,

S�� ¼ R�� � 1

3
g��R; (7)

one can pass to the alternative form of the field equations in
(4). We have

S�� þ 1

�
C�� ¼ 0: (8)

We now introduce a first-order differential operator D,
whose action on a symmetric tensor ��� is given by

D��� ¼ 1

2
ð����r���� þ ��

��r����Þ: (9)

It is not difficult to show that this expression reduces to

D��� ¼ ��
��r����; (10)

provided that

r���� ¼ r��; (11)

where � is the trace of the tensor ���. Choosing this

tensor as

��� ¼ R�� � 1

4
g��R; (12)

for which condition (11) is fulfilled, and comparing
Eqs. (5), (9), and (10) we find that

C�� ¼ �D��� ¼ �DS��: (13)

Taking this into account in Eq. (8), we obtain

DS�� ¼ �S��: (14)

It is interesting to note that this equation closely resembles

the Dirac equation D�A ¼ ��B
A r��B ¼ ��A. Here the

Dirac type operator D acts on the traceless Ricci tensor,

DS�� ¼ Dð��Þ
ð��Þ�r�S��. Clearly, the action of D on

Eq. (14) leads to the second-order Klein-Gordon-type
equation

ðD2 ��2ÞS�� ¼ 0: (15)

Next, we rewrite the field equations of NMG given in (1)
in terms of the traceless Ricci tensor S�� and the operator

D. Using the fact that the Cotton tensor (5) satisfies relation
(11) and taking into account Eqs. (10) and (13), we obtain
that

D2S�� ¼ ���
��r�C��: (16)

It is straightforward to show that this expression, with
Eqs. (5) and (12) in mind, can be written in the form

D2S�� ¼ r2��� �r�r����: (17)

This equation can be transformed further by using condi-
tion (11) and the standard relation between the Riemann
and the Ricci tensors in three dimensions. Using then the
resulting expression in Eq. (1), we reduce it into the form
of the massive (tensorial) Klein-Gordon-type equation
with a curvature-squared source term. Thus, we obtain

ðD2 �m2ÞS�� ¼ T��; (18)

where the traceless source term is given by

T�� ¼ S��S
�
� � R

12
S�� � 1

3
g��S��S

��: (19)

Meanwhile, the trace equation in (3) takes the form

S��S
�� þm2R� R2

24
¼ 6m2�: (20)

We note that in this description, the field equations NMG
reduce to two independent equations (18) and (20), where
the latter equation can be thought of as a constraint. In the
canonical description, Eq. (3) is a consequence of (1). It is
easy to see that with the relation

T�� ¼ 	S��; (21)

where 	 is a function of the scalar curvature, which is
fulfilled for algebraic types D and N spacetimes, Eq. (18)
takes the form

ðD2 ��2ÞS�� ¼ 0: (22)

Here

�2 ¼ m2 þ 	: (23)

Comparing this equation with that in (15) we see that, for
type N spacetimes and type D spacetimes with constant
scalar curvature, they become equivalent to each other.
That is, in the case under consideration, the field equations
of TMG in (14) can be thought of as the square root of
those of NMG given in (22). This fact enables us to map all
types D and N solutions of TMG into NMG.
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We first focus on algebraic type D solutions. It turns out
that for every algebraic typeD solution of TMG there exist
two inequivalent type D solutions to NMG, provided that
the solution parameters are related by

�2 ¼ 9m2

7

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 7�=m2

p
ffiffiffi
3

p
�
; (24)

� ¼ � 2m2

21

�
13� 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 7�=m2

p
ffiffiffi
3

p
�
: (25)

The proof of this statement is straightforward. We recall
that type D spacetimes in three dimensions are split
into types Dt and Ds, depending on whether the one-
dimensional eigenspace of S�� is timelike or spacelike
(see, for instance, [22]). For type Dt spacetimes the
canonical form of the traceless Ricci tensor S�� is given by

S�� ¼ pðg�� þ 3t�t�Þ; (26)

where p is a scalar function and t� is a timelike vector

normalized as t�t
� ¼ �1. In works [22,23], it was shown

that when p is constant and t� is a Killing vector, obeying

the equation

r�t� ¼ �

3
���
t


; (27)

the field equations of TMG are solved, fixing the value of
p. With this in mind, substituting (26) in (19) and (21) we
find that

	 ¼ �p� R

12
: (28)

For any vector with r�k
� ¼ 0, we have

r�r�k� ¼ R�

k
 ¼ �

�
2p� R

3

�
k�; (29)

where in the last step we have used Eqs. (7) and (26). From
Eqs. (27) and (29) it follows that

6p ¼ 2

3
�2 þ R: (30)

Combining now this equation with those in (23) and (28),
and taking into account Eq. (6), we obtain

m2 � 10

9
�2 ¼ 3

2
�: (31)

Meanwhile, substitution of (26) into Eq. (20), with Eqs. (6)
and (30) in mind, yields

1

6

�
2

3
�2 þ 6�

�
2 þ 6m2�� 3

2
�2 ¼ 6m2�: (32)

Solving algebraic equations (31) and (32), we arrive at
the relations given in (24) and (25). A similar analysis
shows that these relations remain unchanged for type Ds

spacetimes.

We now show that every algebraic type N spacetime of
TMG provides two inequivalent type N solutions to NMG
and the parameters of the solutions are adjusted according
to the relations

�2 ¼ �m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �=m2

q
; (33)

� ¼ 2m2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �=m2

q
Þ: (34)

For spacetimes of type N, the canonical form of the trace-
less Ricci tensor is given by

S�� ¼ l�l�; (35)

where l� is a null vector [24]. Substitution of this tensor

into Eqs. (20) and (21) yields

�ð4m2 ��Þ ¼ 4m2� (36)

and 	 ¼ ��=2, respectively. Hence, Eq. (23) takes the
form

m2 ��2 ¼ 1

2
�; (37)

Again, solving algebraic Eqs. (36) and (37) we obtain the
relations given in (33) and (34).
The novel description of NMG also turns out to be a very

powerful tool for finding new exact types D and N solu-
tions to NMG which do not have their counterparts in
TMG. A crucial step on this route amounts to the follow-
ing: In TMG, as seen from Eq. (14), the action of the
operator D on the traceless Ricci tensor S�� results in the

same type geometry. Meanwhile, this is not the case in
general, where the same operation leads to ‘‘intermediate’’
geometries as well. However, the secondary action of D
restores the original types D and N geometries in NMG.
Furthermore, it turns out that p ¼ �R=3 for type D solu-
tions with constant scalar curvature. Altogether, these facts
enable us to find all type D and N solutions of NMG.
Below, we present some intriguing and simple examples of
such solutions.
We begin with the type Dt solution with constant scalar

curvature which is given by

ds2 ¼ �dt2 þ e2
ffiffiffiffiffiffi
2=5

p
mtdx2 þ e�2

ffiffiffiffiffiffi
2=5

p
mtdy2 (38)

and � ¼ m2=5. This solution admits a three-parameter
group of motions and the associated Killing vectors form
the Lie algebra

½�1; �2� ¼ 0; ½�1; �3� ¼
ffiffiffiffiffiffiffiffi
2=5

p
m�1;

½�2; �3� ¼ �
ffiffiffiffiffiffiffiffi
2=5

p
m�2:

(39)

Thus, the solution is of a homogeneous anisotropic space-
time of Bianchi type VI0, or with Eð1; 1Þ symmetry.
There also exists the typeDs constant curvature solution

given by

PRL 106, 021301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 JANUARY 2011

021301-3



ds2 ¼ cosð2
ffiffiffiffiffiffiffiffi
2=5

p
mxÞð�dt2 þ dy2Þ þ dx2

þ 2 sinð2
ffiffiffiffiffiffiffiffi
2=5

p
mxÞdtdy (40)

and � ¼ m2=5. This is a homogeneous anisotropic space-
time of Bianchi type VII0, or with Eð2Þ symmetry, which
can be obtained from (38) by an appropriate analytical
continuation as well.

It turns out that for�2 ¼ 0 in (23) (and only for this case
[25]) NMG gravity also admits a class of type D solutions
with nonconstant scalar curvature. For these solutions, as
seen from Eq. (20), � ¼ m2. The most simple example
(type Ds) with one Killing vector is given by

ds2 ¼ �k2ðr� r0Þ2dt2 þ dr2

k2ðr� r0Þ2
þ ½fð�Þ þ r� r0�2d�2; (41)

where fð�Þ is an arbitrary function and k2 ¼ �2m2

(m2 < 0). This is an extremal black hole type solution
with the horizon located at r ¼ r0 and the surface gravity
is zero. In the asymptotic region r ! 1, it becomes the
metric of AdS3 spacetime, whereas in the near-horizon
region r ! r0, we have the metric of AdS2 � S1. For
fð�Þ ¼ const this solution describes an extremal black
hole which was earlier found in [13]. Finally, we present
a new remarkably simple type N solution given by

ds2 ¼ d�2 þ 2cosh2ð��Þdudvþ coshð��Þ
� ½coshð��ÞfðuÞ � v2�2 coshð��Þ�du2; (42)

and � ¼ ��2ð1þ �2=4m2Þ. Here fðuÞ is an arbitrary func-
tion and � ¼ ffiffiffiffiffiffiffiffiffi��

p
. This metric does not admit the null

Killing vector and belongs to a class of Kundt spacetimes.
However, when � ! 0, the Killing isometry appears and
@v becomes a covariantly constant null Killing vector. The
resulting metric represents pp waves being the limiting
case of AdS pp waves found in [11].

In summary, the results presented in this Letter are of
interest for several reasons: First of all, we have given a
novel description of NMG in terms of a first-order differ-
ential operator, appearing in TMG and resembling a Dirac
type operator, acting on the traceless Ricci tensor. Such a
description has a striking consequence, greatly simplifying
the search for all types D and N solutions to NMG. This is
a very large class of solutions and their exhaustive explo-
ration is given in [25,26]. Here we have established a
simple framework, involving in essence an algebraic pro-
cedure, for mapping all types D and N exact solutions of

TMG into NMG. We have also presented some intriguing
and the most simple examples of types D and N new exact
solutions to NMG, which do not have their counterparts in
TMG.
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