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Motivated by the need for quantum computers to communicate between multiple, well separated qubits,

we introduce the task of quantum routing for distributing quantum states, and generating entanglement,

between these sites. We describe regular families of coupled quantum networks which perfectly route

qubits between arbitrary pairs of nodes with a high transmission rate. The ability to route multiple states

simultaneously and the regularity of the networks vastly improve the utility of this scheme in comparison

to the task of state transfer, leading us to propose an implementation in optical lattices.
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Introduction.—The task of quantum state transfer was
introduced in the context of quantum computation as a
protocol to simplify interactions between distant qubits in
an architecture that has locality restrictions, as in solid state
systems. This study was initiated by Bose, who analyzed a
uniformly coupled quantum chain and evaluated its effi-
cacy for transferring an unknown quantum state from one
end to the other [1]. A plethora of protocols have since
been introduced to achieve transfer perfectly [2–5] or with
arbitrary accuracy [6]. Even without experimental imple-
mentation, these studies have proven extremely useful as a
constructive tool [7,8].

Various factors have severely reduced the feasibility of
existing state transfer protocols. All known perfect transfer
protocols that do not directly couple every qubit in the
network [9] (and hence do not have trivial transfer dis-
tance) transfer an input quantum state from a given site
onto a specific, corresponding output site, and can never
significantly enhance the connectivity of a scaling compu-
tational system. Furthermore, the solutions are either
highly nonlocal (hypercubes [10–12] and integral circulant
graphs [13]), or local but irregular. These can be circum-
vented by introducing some control on the input and output
spins [14–16]. However, some level of control was tacitly
assumed in all scenarios, in that quantum states must be
introduced and removed from the input and output spins of
the network, which typically must be implemented quickly
in comparison to the Hamiltonian dynamics (although the
required speed can be reduced [17,18]). Explicitly ac-
knowledging this additional control produces vastly richer
dynamics [19].

In a system which should transfer quantum states be-
tween arbitrary input and output ports, we would require
control over all possible input and output ports. Hence, in
this Letter, we assume that local gates can be applied
quickly on these nodes, and use this to design protocols
to transfer a quantum state from any node to any other node
in a regular network of arbitrary spatial dimension.
We refer to this task as perfect routing. In doing so, we

overcome the major limitations of previous perfect state
transfer schemes and introduce some robustness to manu-
facturing imperfections. There are also advantages over
arbitrarily accurate schemes in terms of scaling properties
of the required fields, and the rate of transfer. The same
controls can also be used to produce entangled states across
the network. In trade for these many advantages, there are
still some stringent manufacturing requirements since our
construction will make heavy use of symmetry properties
which need to be present in the system. Our strategy is to
decompose our construction into two steps. The first,
which we demonstrate in 1D, is how to take the analysis
of a small region of a network, and be able to tile it so the
overall Hamiltonian has a direct sum structure, each com-
ponent of which is the same as the original region you were
interested in. Then we show how to analyze these small
regions to create a basic routing unit. Finally, we present a
possible implementation of this scheme in optical lattices.
One-dimensional prototype.—We start by considering

routing in a one-dimensional system of 3N þ 1 qubits, as
depicted in Fig. 1(a), in order to illustrate some of the basic
ideas of our construction. Consider a Hamiltonian

FIG. 1. (a) A quasi-1D routing structure. The circles represent
qubits, and the lines indicate an XX coupling between pairs of
qubits of strength þ1, unless �1 is indicated. (b) Under a basis
transformation, a simple direct sum structure is apparent. In this
case, all coupling strengths are

ffiffiffi
2

p
.
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H ¼ 1

2

X
fn;mg2E

Jn;mðXnXm þ YnYmÞ;

whereE is the set of edges of the graph depicted in Fig. 1(a),
J3k;3kþ1 ¼ �1 for all k and Jn;m ¼ 1 otherwise (@ ¼ 1 such
that times and energies can be treated as dimensionless).
The Hamiltonian is spin preserving,

�
H;

X3Nþ1

n¼1

Zn

�
¼ 0;

sowe analyze a protocolwhere all spins are initialized in the
j0i state. Although we have chosen this specific form of
Hamiltonian, minor modifications of the present construc-
tions allow the generalization to any local, spin-preserving
Hamiltonian such as the anisotropic Heisenberg model or
arrays of harmonic oscillators.

The state to be transferred is a superposition of 0 and 1
excitations. Since the 0 excitation subspace is a single
state, it is invariant under the Hamiltonian evolution,
and we concentrate on the single excitation subspace.
The standard, spin, basis is denoted by jni ¼
j0i�n�1j1ij0i�3Nþ1�n. However, this is not the most natural
basis for us to work in. Instead, we define j�ni ¼ j3nþ 1i
and j��

n i ¼ ðj3nþ 2i � j3nþ 3iÞ= ffiffiffi
2

p
, which allows a

crucial observation: the action of the HamiltonianH causes
the states j��

n i to interfere destructively on spins 3nþ 4
and 3nþ 1, respectively. Hence, the Hamiltonian is left
with a direct sum structure as depicted in Fig. 1(b) where
each subsystem is a uniformly coupled chain of length 2 or

3, and achieves perfect transfer in times �=ð2 ffiffiffi
2

p Þ and �=2,
respectively; i.e., e�iH�=2j��

n�1i ¼ j�þ
n i. Now observe that

a fast application of the local rotations (but globally ap-
plied) U ¼ Q

N
n¼1 Z3n performs the conversion Uj��

n i ¼
j��

n i, i.e., it transfers the state from one subsystem to the
next. Hence, starting from j�þ

n i, we applyU every�=2 and
after jm� nj�=2 we arrive in the state j�þ

mi. This achieves
the long-range transfer. We now just have to show how to
convert from an input state, j3nþ 1i or j3nþ 2i, to j�þ

n i in
order to be able to use the long-range transfer protocol.
This step also has to be inverted at the end, but the
periodicity of the dynamics ensure this.

If the input qubit is 1, then j�þ
1 i is simply produced

by letting the Hamiltonian evolve for time �=ð2 ffiffiffi
2

p Þ.
This operation is its own inverse. For other starting qubits
3nþ 1, we observe that Z3nþ2Z3nþ3 is equivalent to ap-
plying a Z rotation to the �þ

n end of the 3-qubit effective
chain in Fig. 1(b), which can be composed with the natural
Hamiltonian evolution to create the necessary transforma-
tion. More crucially for the coming generalization, we
must show how to start from the vertices of the diamonds,
say j3nþ 2i, and produce j�þ

n i. Provided n � 0, N � 1,
we can simply evolve the Hamiltonian for a time �=2, at
which point we have

ðj��
n�1i þ j�þ

nþ1iÞ=
ffiffiffi
2

p
: (1)

Applying phase gates
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3n�1Z3n

p
and allowing evolution

for another time step �=2 produces ðij�þ
n i þ j��

n iÞ=
ffiffiffi
2

p
and a phase gate

ffiffiffiffiffiffiffiffiffiffiffiffi
Z3nþ3

p
yields j�3nþ2i.

This proves that we can perfectly propagate an unknown
quantum state along the length of the chain between any set
of nodes in a time proportional to the distance between the
nodes, with the help of local magnetic fields. A bonus is that
one of the intermediate states, Eq. (1), is entangled, so we
can also produce and distribute Bell pairs. The Hamiltonian
and controls are all spin preserving, so without external
initialization of the system in some complicated state of
many excitations, its effects can be classically simulated
(i.e., presumably not universal for quantum computation).
Since the subsystems in Fig. 1(b) are independent, we can
have multiple excitations in the system simultaneously,
provided they are each separated by at least one subsystem.
A 1D structure imposes that one state can never move past a
second one. To resolve this, we need to move to a two or
three dimensional structure, as we will now demonstrate.
Designing systems with a subsystem reduction.—

Figure 2 demonstrates the straightforward generalization
of the 1D results so that we can construct a basic
d-dimensional subsystem building block which we can
tile to create the complete network. We simply take the
extremal links in the subsystem network, which are
coupled with strength J, and replace them with a V struc-

ture such that each coupling strength has modulus J=
ffiffiffi
2

p
.

These couplings are then patterned so that when the struc-
ture is tiled, one of the 4 coupling strengths in each

diamond is �J=
ffiffiffi
2

p
. This is depicted for 2D, but works

for any dimension d. As before, applying a Z rotation on
one of the extremal spins of a block hops an excitation
present across the V between (j01i þ j10i) and (j01i �
j10i), which are effective single excitations on two inde-
pendent subsystems. Thus, we simply have to demonstrate
how to route from any extremal node of the subsystem to
any other. Similarly to the 1D case, multiple states can be
transferred at once, since all states are kept confined
to individual sections; it suffices to keep these sections

FIG. 2. The basic scheme for a 2D square lattice. Once perfect
routing between extremal nodes in (a) has been shown, this can
be converted into a repeating unit (b) which can be tiled to give a
complete network with a direct sum structure given by (a).
Dashed edges denote a scaling factor of coupling strengths by
1=

ffiffiffi
2

p
relative to (a). The gray lines are scaled by �1=

ffiffiffi
2

p
.
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separated by a single unit, and then the states never meet
and never interfere.

Dynamics within a subsystem.—We will now give a
simple construction of a subsystem structure based on the
design of perfect state transfer chains. We start from a
perfect state transfer chain of M � 5 qubits (M odd).
Such a scheme can be written as

Hchain ¼
XM�1

n¼1

Knðjnihnþ 1j þ jnþ 1ihnjÞ;

and exhibits perfect transfer in time t0, i.e., e
�iHchaint0 jni ¼

jMþ 1� ni. Using the techniques introduced in [20,21],
this can be redesigned into a star topology of 2d branches,

where the central coupling becomes JðM�1Þ=2=
ffiffiffi
d

p
(see

Fig. 3). Under this transformation, the single excitation
states of the chain, jni, map to jWn

0 i [for n � ðMþ 1Þ=2]
where

jWn
k i ¼

1ffiffiffi
d

p Xd
j¼a

eð2�ijk=dÞjnji

and each of the split chains is indexed from a to d; i.e., the
extremal nodes are 1a to 1d and Ma to Md (due to
symmetry, it is entirely irrelevant which are labeled as
which). By definition,

e�iHstart0 jWn
0 i ¼ jWMþ1�n

0 i:
To derive the dynamics of the other states jWn

k i, note that

Hstar decomposes into a further direct sum structure of
fixed k, each with a hopping Hamiltonian which is exactly
the same effective Hamiltonian as for Hchain acting on

states of the form ðjmi � jMþ 1�miÞ= ffiffiffi
2

p
. Con-

sequently, for k � 0,

e�iHstart0 jWn
k i ¼ �jWn

k i:
By restricting to these intervals of t0, we find a very simple
description of the unitary evolution of states on the star
subsystem, which we can make use of for designing the
routing protocols within the subsystem.

Routing within a subsystem.—Our aim is now to route an
input state within a subsystem, i.e., to transmit it from spin

1j to 1l. The input and output states can be written as

j1ji ¼ 1ffiffi
d

p P
ke

�ð2�ijk=dÞjW1
k i, which differ only by the rela-

tive phases of the jW1
k i states. We start manipulating the

phases by first evolving for time t0, applying a phase gate

of phase �, Zð�Þ, on each of the spins 1j, and waiting
another transfer time t0. The relative phase of the jW1

0 i
component is shifted:�X

k�0

eð�2�ijk=dÞjW1
k i þ e�i�jW1

0 i
�
=

ffiffiffi
d

p
:

Now all we have to do is apply local phase gates on each
spin 1j with the cumulative effect that

Yd
j¼a

Zð2�j=dÞ
j jWki ¼ jWkþ1moddi;

enabling us to permute through each jWki and alter its
phase, creating the state we need after only time 2dt0.
Hence, we can route from any node 1j to any other 1l.
In fact, one can prove that the magnetic fields give us full

control over the single excitation subspace of a subsystem,
so we can create any single excitation state that we want
across the input and output nodes, such as an entangled
state, which can subsequently be distributed using the state
transfer protocol. If d is even, the construction is particu-
larly simple because then we can use the phase changing
protocol to create

1ffiffiffi
d

p X
j

ei�ð�1Þj=4jWji ¼ 1ffiffiffi
2

p
�
j1di þ i

��������1
d

2

��

from an excitation initially localized on a single site.
Our construction is general enough to take advantage of

any one of the infinitely many solutions to the perfect state
transfer problem using a fixed Hamiltonian [4,7], but there
is a particularly promising choice if d ¼ 3 (i.e., 2D trian-
gular or cubic lattice). Here we select the standard perfect

state transfer solution for M ¼ 5 [2], i.e., K1 ¼
ffiffiffi
2

p
and

K2 ¼
ffiffiffi
3

p
, meaning that the regular network that we con-

struct has every coupling strength taking on the same
modulus. Furthermore, this solution is the most efficient
solution to the state transfer problem with regard to a
number of parameters [5,7,22].
Implementation.—The techniques described here can

be applied to any particle number preserving local
Hamiltonian, and therefore in principle to a vast range of
experiments. One of the most natural candidates is an
optical lattice, in which vast arrays of atoms can be pre-
pared in a particular hyperfine ground state (corresponding
to logical j0i of a qubit) in periodically defined lattices [23]
with local Hamiltonian interactions [24] where controls
can be applied periodically [25]. The intersite couplings
in the limit dnm � Un, Um take the form Jn;m ¼
d2nmð1=Un þ 1=UmÞ, where the dnm are tunable for each
edge in a subsystem via the depth of the trapping potential,
and the Un are collisional coupling strengths on site n.
These collisional couplings can be tuned through a vast

FIG. 3. (a) A perfect state transfer coupling scheme for a chain
of 5 qubits. (b) Conversion of (a) into a star topology (d ¼ 2),
with jni in (a) transforming into jWn

0 i. Dashed coupling strengths
are scaled to K2=

ffiffiffi
d

p
for 2d branches.
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range of positive and negative values using Feshbach reso-
nances, enabling the required patterning of coupling
strengths. In any such experiment, it would be preferable
that the local magnetic field controls can be applied slowly
rather than quickly. Given that we have shown there is at
least one efficient solution to the state routing problemwith
the given controls, it is a simple problem to numerically
find other pulse sequences under constraints such as pulse
strength and rate of change.

Conclusions.—In this Letter, we have argued that rout-
ing will be much more useful in a computational architec-
ture than state transfer. We have shown how regular
networks which are local in any number of spatial dimen-
sions d can be designed to route quantum states between
arbitrary nodes in a time that is linear in the distance to be
covered. Multiple states can be transferred at once, mean-
ing that a transfer rate can be realized which is in excess of
that achievable in perfect state transfer schemes [5,7], even
in the 1D case. Achieving this required a level of control
that was never explicitly utilized in previous perfect state
transfer schemes until its recent observation in [19], but
was implicitly present for the addition and removal of
states. These controls can be applied in a global way by
addressing, for instance, every fifth spin at regular inter-
vals. These properties therefore bring such a scheme much
closer to reality, and we have presented optical lattices as a
natural candidate.

Before such experiments can be seriously considered, a
study of errors would be necessary. We defer this to future
studies, but conclude with some strong motivation for the
error tolerance of this model. If manufacturing errors can
be identified on a given subsystem, then provided these
errors are not on the input or output blocks, they can be
routed around. Let us assume that a manufacturing error
occurs within a subsystem with a probability p, but it is
promised to preserve the symmetry properties in the V
structures [26]. On detecting an error, we route around
this particular subsystem for transmission. Considering
the underlying lattice (where we treat the overall lattice
as being composed of a convolution between the under-
lying lattice and the subsystem), this corresponds to re-
moving a single site with probability p. From percolation
theory, long-range connectivity (and hence communica-
tion) remains provided 1� p > pc, the site percolation
threshold of the underlying lattice. We can choose the
underlying geometry to optimize this tolerance using, for
instance, a triangular lattice in 2D, since it has a smaller
percolation threshold (pc ¼ 1

2 ) than a square lattice. Future

analysis may include a treatment of cooperating parties—it
is currently assumed that parties at all sites cooperate, but
how many error prone participants can be tolerated? Can
this be protected against through the use of error correcting
codes or Byzantine agreement protocols? If uncooperative
parties can be identified, then they can be routed around in
much the same way as faults in the manufacture of the
network.

A unique feature of one-dimensional state transfer sys-
tems is their ability to transfer a state irrespective of how
the rest of the chain is initialized [21,27]. Recovering this
feature in routing scenarios is a significant challenge.
However, the subsystem structure means that we only
need to correctly prepare the state of a small number of
subsystems, and the magnetic field controls prove very
helpful in doing so. Indeed, by only initializing subsystems
as needed, we can remove any noise that has occurred on
these subsystems while routing is being performed else-
where in the network, where state transfer requires the
entire chain to remain noise free.
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