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AD-dimensional Markovian open quantum system will undergo quantum jumps between pure states, if

we can monitor the bath to which it is coupled with sufficient precision. In general, these jumps, plus the

between-jump evolution, create a trajectory which passes through infinitely many different pure states.

Here we show that, for any ergodic master equation, one can expect to find an adaptivemonitoring scheme

on the bath that can confine the system state to jumping between only K states, for some K�ðD�1Þ2þ1.

ForD ¼ 2 we explicitly construct a two-state ensemble for any ergodic master equation, showing that one

bit is always sufficient to track a qubit.
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The first quantitative model of quantum dynamics was
Einstein’s model of stimulated and spontaneous jumps [1]
between Bohr’s stationary atomic states [2]. In modern
language, this is a model for an open quantum system
weakly coupled to a heat bath, and, as Einstein showed,
such jumps can lead to an equilibrium state that is a
thermal mixture of energy eigenstates, with finite entropy.
In Einstein’s model, if one could track the individual
stochastic events of energy exchange between atom and
bath, then one would know which energy eigenstate the
system occupied at any time. Truncating to a finite number
D of energy eigenstates, a finite classical memory (having
K states, with K � D) is obviously sufficient to keep track
of the quantum system (that is, to store knowledge of its
exact pure state) in thermal equilibrium.

Einstein’s theory is a special case of Markovian open
quantum system dynamics for finite-dimensional systems,
which most generally are describable by a Lindblad-form
master equation (ME) [3]:

_� ¼ L� � �i½Ĥeff�� �Ĥy
eff� þ

XL

l¼1

ĉl�ĉ
y
l ; (1)

where Ĥeff � Ĥ� i
P

lĉ
y
l ĉl=2. Here Ĥ is Hermitian (it is

the Hamiltonian) but the jump operators fĉlg are arbitrary.
Einstein’s theory is a special case because in it each jump

operator is proportional to jEihE0j, for some Ĥ eigenstates
jEi and jE0i, so that the state after any jump is a stationary
state jEi. For a general ME, it is always possible, in
principle, to monitor the bath such that every jump is
resolvable, so that the system can be known to be in
some pure state jc ðtÞi at all times [3–5]. However, in
general, after a jump at time �j, the state / ĉljc ð�jÞi will
depend on the prejump state jc ð�jÞi, and will not be an

eigenstate of Ĥ. Even if it were an energy eigenstate, it
would not, in general, remain stationary until the next jump
because its subsequent evolution would be generated by

the effective (non-Hermitian) Hamiltonian Ĥeff appearing
in Eq. (1).
It is thus not at all obvious whether for a general finite-

dimensional open quantum system it would be possible to
keep track of its pure state, even in principle, with a finite
classical memory. On the face of it, it would seem neces-
sary to store the exact times of each jump—a sequence of
real numbers f�j: jg each of which would require, in

principle, an infinite memory to store. Alternately one
could store the conditioned quantum state jc ðtÞi itself,
but this (a D-dimensional complex vector) would also
require an infinite memory. This situation is of course
completely different from a D-state stochastic classical
system (which is what Einstein’s model amounts to).
In this Letter we address this fundamental question

about open quantum system dynamics. We show that for
any Markovian dynamics which is ergodic (i.e., with a
unique equilibrium � of rank D), one can expect to be
able to track the state with a K-state classical apparatus for
some K � ðD� 1Þ2 þ 1. This is possible only because
there is entanglement between the system and bath, which
means that different monitoring schemes on the bath give
rise to different sorts of stochastic pure-state trajectories
(‘‘unravellings’’ [4]) for a given ME. We then prove that
for D ¼ 2 (a qubit), K ¼ 2 is always sufficient; that is,
there is always an unravelling for which the qubit jumps
between only two possible states, j�1i and j�2i. Although
this sounds similar to Einstein’s dynamics, it is in fact quite
different in general—the two states are nonorthogonal,
h�1j�2i � 0, and the monitoring of the qubit’s environ-
ment must be adaptive, controlled by the classical bit that
stores the state of the qubit.
We begin by revisiting the preferred ensemble fact [6],

to explain why it is not possible in general to unravel a ME
such that the system jumps between the eigenstates of the
equilibrium � (as in Einstein’s model). Then we show the
general result cited above for D-dimensional systems, and
give an explicit construction of the adaptive unravelling for
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the special case of cyclic jumps with only one Lindblad
operator ĉ. We then prove that one bit is always sufficient
to track a qubit, and that in some cases it is actually
possible to store the state of the open qubit using less
than one bit of memory on average. Surprisingly, consid-
ering K > 2 can actually help in this regard. We illustrate
these phenomena using the resonance fluorescence ME [4].

The preferred ensemble fact.—Consider a Linbladian L
with unique steady state �ss of rank D> 1, defined by
L�ss ¼ 0. This mixed state can be decomposed in terms of
pure states j�ki 2 support½�ss� via �ss ¼ P

K
k¼1 }kj�ki�

h�kj with positive constants }k. Note that there are infi-
nitely many such decompositions, as the states j�ki need
not be orthogonal. However, only for some decompositions
is it possible to devise a way to monitor the system’s
environment—which leaves the average evolution of the
system unchanged from Eq. (1)—such that the system will
only ever be in one of the states j�ki, and will spend a
proportion of time in that state equal to }k, in the long-time
limit. Decompositions f}k; j�kig that can be realized in this
way are called physically realizable (PR) [6].

As shown in Ref. [6], an ensemble f}k; j�kig is PR if and
only if (iff) there exists rates �jk � 0 such that

8k; Lj�kih�kj ¼
XK

j¼1

�jkðj�jih�jj � j�kih�kjÞ: (2)

For a general ME, most decompositions f}k; j�kig of �ss

are not PR, including the K ¼ D ensemble composed from
the diagonal basis for �ss [3].

The existence of PR ensembles.—For finite K and D,
searching for solutions of Eq. (2) reduces to solving poly-
nomial equations. We can describe K pure states with
Kð2D� 1Þ real unknowns and K quadratic constraints
from normalization. Equation (2) introduces K2 � K un-
known rates �jk and imposes an additional KðD2 � 1Þ
cubic constraints (the minus one is because both sides
are traceless by construction). Thus we have KD2 poly-
nomial constraints and Kð2Dþ K � 2Þ unknowns. For
K > ðD� 1Þ2 þ 1 we have an underdetermined system
of equations. For linear underdetermined systems, given
by equations ffjg, there are infinitely many solutions ex-

cept for the set of measure zero for which there exist
constants f�jg such that

P
j�jfj þ 1 ¼ 0. Similarly, for

polynomial systems fpjg, the real Nullstellensatz [7] cer-

tifies that there are no real solutions iff there exist some
polynomials fajg and fdkg such that

P
jajpj þ

P
kd

2
k þ

1 ¼ 0. Thus, for a general ME we expect to be able to
find a K-element PR ensemble for some K�1�ðD�1Þ2.

The freedom that experimentalists have (in principle) to
realize different PR ensembles comes from the ability to
monitor the system’s environment in different ways. This
can be understood as follows. The ME (1) is invariant
under the transformations fĉlg ! fĉ0mg, where ĉ0m ¼P

L
l¼1 Smlĉl þ �m, and Ĥ ! Ĥ0 ¼ Ĥ � i

2

P
M
m¼1ð��

mĉ
0
m �

�mĉ
0y
m Þ. Here ~� is an arbitrary complex vector and S is

an arbitrary semiunitary matrix—
P

M
m¼1 S

�
l0mSml ¼ �l0;l.

Unravelling this ME with fĉ0mg as the jump operators and

Ĥ0
eff ¼ Ĥ0 � i

P
M
m¼1 ĉ

0y
m ĉ0m=2 as the effective non-

Hermitian Hamiltonian clearly gives different stochastic
evolution, while leaving the average evolution unchanged.
To obtain the most general pure-state unravelling of the

ME, we require ~� and S to depend upon the previous
record of jumps. That is, we require an adaptive monitoring
[3,5,8]. Of course when we use this to achieve jumping
between a finite number of states, the classical K-state
memory that stores which state the system is currently in

carries all the information necessary for determining ~� and
S. That is, the adaptive unravelling is specified byK differ-

ent values for ~� and S. The physical meaning of these
parameters is most easily explained in a quantum optics
context: S describes a linear interferometer [9] taking the

field outputs from the system as inputs, while ~� describes
adding a weak local oscillator (WLO) to the output fields
from the interferometer prior to detection by photon count-
ing. Adaptive control of a WLO has recently been used to
experimentally realize the Dolinar receiver [10].
Backing out the measurement scheme.—Given a PR

ensemble, there exists a monitoring scheme that realizes
it, by the definition of PR. However, it may not be easy to
find the scheme. We now present an explicit method for
determining this scheme for the special case of cyclic
jumps with a single Lindblad operator ĉ. That is, we
assume that the system in the state j�ki always jumps to
the state j�kþ1i [strictly, j�ðkþ1ÞmodKi]. In general we do

not expect there to exist cyclic jump solutions for D> 2
[11]. Later we exhibit 11 different cyclic jump solutions for
a qubit (D ¼ 2), and the method here is applicable to each
of them.
In the case of a single Lindblad operator, the only free-

dom in the unravelling is in choosing �k, the WLO ampli-
tude when the system is known to be in state j�ki. This
gives the jump operator ĉþ �k and the effective

Hamiltonian Ĥk
eff ¼ Ĥeff þ i�k�ĉ� ij�kj2=2. Thus the

system will undergo cyclic jumps iff

ðĤeff þ i�k�ĉÞj�ki / j�ki; ðĉþ�kÞj�ki / j�kþ1i; (3)

Now by assumption from Eq. (2), Lj�kih�kj / j�kþ1i�
h�kþ1j � j�kih�kj. From this we can show that

ĉj�ki ¼ akj�ki þ bkj�kþ1i; (4)

Ĥ effj�ki ¼ ckj�ki þ ia�kbkj�kþ1i: (5)

For some coefficients ak, bk, and ck that are easily found
given j�ki and j�kþ1i. Comparing this to Eq. (3), we see
that choosing �k ¼ �ak gives cyclic jumps as required.
For a qubit, one bit is all it takes.—We now prove that a

two-state PR ensemble always exists for a qubit. We use
the Bloch representation, so that Eq. (1) becomes

_~r ¼ A~rþ ~b; (6)
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where A is a 3� 3 matrix and ~b is a three vector. As
always, we assume that there exists a unique steady state

~rss ¼ �A�1 ~b, which is the case iff the real part of each
eigenvalue of A is negative. We can track this system with a
K-state memory iff there exists an ensemble f}k; ~rkg and
rates �jk � 0 such that

8k; ~rk � ~rk ¼ 1; (7)

8j; A~rj þ ~b ¼ XK

k¼1

�jkð~rk � ~rjÞ: (8)

Thus the problem reduces to finding a real solution to a
system of quadratic equations with real coefficients. This
type of problem is surprisingly hard even for a small
number of unknowns, and is known to be an NP-complete
problem in general [12].

Luckily, the simplest case of K ¼ 2 has an analytical
solution. Here the qubit is assumed to jump between two
states, ~r1 and ~r2. Then Eqs. (8) reduce to a single equation,
Að~r1 � ~r2Þ ¼ ð�12 þ �21Þð~r2 � ~r1Þ, so ~r1 � ~r2 ¼ ~v is an
eigenvector of A with eigenvalue � ¼ �ð�12 þ �21Þ.
From Eq. (7) and the fact that }1 ¼ �21=ð�21 þ �12Þ ¼
1� }2, it is simple to show that ~r1 and ~r2 have the form

~r k ¼ ~rss � ð�1Þk �v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k~rssk2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
}k=ð1� }kÞ

q
(9)

with �v ¼ ~v=k ~vk being the normalized eigenvector, and

}k ¼ 1

2
½1þ ð�1Þkh~rss; �vi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k~rssk2 þ h ~rss; �vi2

q
�:

Because the Bloch vectors must be real, only real eigen-
vectors ~v of A can contribute to the solution. By assump-
tion, A has three nonzero eigenvalues and, by the
fundamental theorem of algebra, at least one eigenvalue
(and consequently one eigenvector) is real. Therefore, a
qubit always has a PR ensemble comprising just two states.

Entropy.— As mooted above, it may be possible to store
the state of a qubit in less than one bit, in an average sense.
We can quantify this by using the Shannon entropy. Under
continuous monitoring, in the long-time limit, the system
will occupy states j�ki with probabilities }k. The Shannon
entropy for this ensemble is hðf}kgÞ ¼ �P

k}klog2}k. This
is lower bounded by the von Neumann entropy for the
steady-state mixture:

hðf}kgÞ � Sð�ssÞ � �Tr½�sslog2�ss�; (10)

with equality iff f}k; j�kih�kjg is the diagonal ensemble.
Note that if the eigenvector ~v of matrix A used in Eq. (9)

is orthogonal to ~rss, then }1 ¼ }2 ¼ 1=2. In this case the
Shannon entropy is 1. If, on the other hand, h ~v; ~rssi � 0,
then the Shannon entropy h for the ensemble will be less
than one and one could store the state on the qubit in less
than one bit on average. That is, one could keep track of the
state of a collection of N identically and independently
monitored qubits using onlyNh bits, in the limit of largeN.

Resonance fluorescence.—In order to illustrate our
ideas, we consider the example of resonance fluorescence
of a two-level atom (a qubit) with basis states j0i and j1i.
The atom is coupled to the continuum of electromagnetic
radiation and so decays to j0i at rate 	. At the same time, it
is driven by a classical field with Rabi frequency �. The
qubit evolution in the interaction frame is given by a ME of

the form of Eq. (1) with Ĥ ¼ �ðj0ih1j þ j1ih0jÞ=2 and one
jump operator ĉ ¼ ffiffiffiffi

	
p j0ih1j [3]. For this case, A and ~b in

the Bloch vector equation, Eq. (6), are

A ¼
�	=2 0 0
0 �	=2 ��
0 � �	

0
@

1
A and ~b ¼

0
0
	

0
@

1
A: (11)

The steady state ~rss ¼ ð0; 2	�;�	2ÞT=ð	2 þ 2�2Þ, is a
mixed state for � � 0. The eigenvectors of A are

~v1 ¼ ð1; 0; 0ÞT and ~v� ¼ ð0; 	� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 16�2

p
; 4�ÞT .

Eigenvector ~v1 is real and orthogonal to ~rss. Thus it will
always yield a solution with Shannon entropy h ¼ 1. This
solution was originally discovered in Ref. [13].
Eigenvectors ~v� are real iff j�j<	=4 and yield solutions
with h < 1. In fact, for 
 � �2=	2 	 1, the entropy of the
solution due to ~v� differs from the lower bound Sð�ssÞ only
at Oð
3Þ. This is seen in Fig. 1, where dashed lines show h
for the three different two-state solutions.
For 
 > 0:0625 (that is, j�j> 	=4) there are no low-

entropy two-state solutions. Surprisingly, by increasing K,
the number of states, from two to three, we regain a
relatively low-entropy solution for some range of 
 >
0:0625. Recall that for two-state jumping, we use one
real eigenvector of A to construct the PR ensemble, as
the ~rk(9) must be colinear with ~rss. For three-state jumping,
the Bloch vectors must be coplanar (and not colinear) with
~rss, so we require two eigenvectors. When A has complex
eigenvectors, they come in conjugate pairs, and we can, for
some values of�, construct a PR ensembles with three real
Bloch vectors using these conjugate pairs.
We find all possible three-state cycles by numerical

search for solutions to Eqs. (7) and (8) using symbolic-
numerical algorithms based on computing Groebner bases

0.02 0.04 0.06 0.08

0.2

0.6

h

1.

1.4

FIG. 1 (color online). The average number of bits required to
keep track of the pure state of a qubit described by Eq. (11), as a
function of dimensionless driving power 
 ¼ �2=	2. The solid
line is the von Neumann entropy for �ss, a lower bound on the
memory required. The other nine curves are for 11 different
adaptive unravellings. Dashed lines are for two-state jumping.
Dotted lines are for cyclic three-state jumping.
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[14]. There are eight solutions, coming in pairs, as shown
(dotted lines) in Fig. 1. For 
 < 0:0795, there are two PR
ensembles generated from complex eigenvectors ~v� of A.
These give the highest and lowest of the three-state jump-
ing entropy curves. In the region 
 < 0:0610, there are an
additional four solutions constructed from ~v1 and ~v�. Only
two new curves appear in Fig. 1 because they come in
degenerate pairs. Finally, for 
 < 0:0335, there are two
more solutions constructed from ~v�. As j�j decreases,
the entropy for four of the solutions approaches 1.206,
whereas the entropy for the other four approaches 0.

The three two-state PR ensembles and two of the three-
state PR ensembles are shown in Fig. 2. Figure 2(a) shows
the main features of low-entropy solutions: the states are
far apart, and the qubit stays mostly in one state that is
nearly aligned with the steady state. Figure 2(b) captures
the nature of high-entropy solutions: the states cluster
around steady state. In both of these cases the ensem-
ble lies in the x ¼ 0 plane. The ensemble with h ¼ 1—
Fig. 2(c)—does not, but is still symmetric under reflection
in this plane. This symmetry is respected for all ensembles
found except for the two pairs of three-state jumping
solutions that are degenerate with respect to entropy.
Figure 2(d) shows the low-entropy pair: the two ensembles
are mirror images of each other in the x ¼ 0 plane.

In summary, we considered an arbitrary ergodic
Markovian open quantum system subject to continuous
monitoring that resolves every jump and allows the system
to stay in a pure state. Under a generic monitoring scheme,
the system state will explore a manifold of pure states, so
tracking it would require infinite memory. Here we showed

that this situation is not an intrinsic property of open
quantum systems, but is just a consequence of using the
‘‘wrong’’ monitoring scheme—the state of the system can
be tracked using a finite (K-state) classical memory if one
adaptively changes the scheme used to monitor the envi-
ronment, controlled by the state of the classical memory
that stores the state of the quantum system. As well as
requiring only a finite memory, we expect such adaptive
monitoring schemes to have advantages in terms of robust-
ness to imperfections [15].
In general one to needs at least K ¼ ðD� 1Þ2 þ 1 clas-

sical states to track a D-dimensional quantum system. The
gap between K and D may be related to the recent result
that there are stochastic processes that can be generated
using quantum systems of lower dimensionality than that
required using only classical systems [16]. The above
quadratic difference is also reminiscent of other
quantum-to-classical comparisons [17], so whether K ¼
ðD� 1Þ2 þ 1 is always sufficient is an important open
question. For D ¼ 2, however, the answer is now known:
one bit is always enough to track the state of a qubit.
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FIG. 2 (color online). Solid arrows show Bloch vectors for
two-state jumping (a)–(c), and three-state jumping (d). Shades
(colors) match those of Fig. 1. The volume of the sphere at the tip
of each arrow represents the probability that the qubit occupies
the corresponding pure state. The dashed arrow is ~rss. For all
plots, �=	 ¼ 0:2 (
 ¼ 0:04).
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