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The structure of Bell-type inequalities detecting genuine multipartite nonlocality, and hence detecting

genuine multipartite entanglement, is investigated. We first present a simple and intuitive approach to

Svetlichny’s original inequality, which provides a clear understanding of its structure and of its violation in

quantum mechanics. Based on this approach, we then derive a family of Bell-type inequalities for

detecting genuine multipartite nonlocality in scenarios involving an arbitrary number of parties and

systems of arbitrary dimension. Finally, we discuss the tightness and quantum mechanical violations of

these inequalities.
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Nonlocality is a fundamental feature of quantum me-
chanics. On top of being a fascinating phenomenon—
defying intuition about space and time in a dramatic
way—nonlocality is also a key resource for information
processing [1], and has thus been the subject of intense
research in recent years.

It is fair to say that, while our comprehension of bipartite
nonlocality has reached a reasonable level, multipartite
nonlocality is still poorly understood. This is partly be-
cause the phenomenon becomes much more complex when
moving from the bipartite case to the multipartite case.
Indeed, this is somehow similar to the case of entanglement
theory, where the structure of multipartite entanglement is
much richer than that of bipartite entanglement [2].

A natural issue to investigate is genuine multipartite
nonlocality [3], which represents the strongest form of
multipartite nonlocality. More precisely, when considering
a system composed of m spatially separated parts, it is
natural to ask whether all m parts of the system are non-
locally correlated, or whether it is only a subset of k < m
parts that display nonlocality while the remaining m� k
parts are simply classically correlated. Indeed such a ques-
tion finds a natural context in quantum information theory
and in the study of many-body systems [4]. First, the
presence of genuine multipartite nonlocality implies the
presence of genuine multipartite entanglement. Also, it is a
fundamental issue to determine the role played by non-
locality in quantum information processing, for instance in
measurement based quantum computation [5].

In 1986, Svetlichny discovered the first method to detect
genuine multipartite nonlocality [3]. Focusing on the case
of a system of three qubits, he derived a Bell-type inequal-
ity which holds even if (any) two out of the three parts
would come together and act jointly—that is, two parties
can display arbitrary nonlocal correlations while the third
party is separated. A violation of such inequality implies
that the systems feature genuine tripartite nonlocality, im-

plying the presence of genuine tripartite entanglement.
Svetlichny’s original inequality was later generalized to
the case of an arbitrary number of parties [6], inspiring
further studies on multipartite nonlocality in [7]. More
refined concepts and measures of multipartite nonlocality
have also been investigated [8].
In this Letter, we start by providing a simple and intuitive

approach to Svetlichny’s original inequality. Our approach,
which naturally extends to the case of an arbitrary number
of parties, makes it clear why these inequalities detect
genuine multipartite nonlocality. It also provides an intui-
tive understanding of their violations in quantum mechan-
ics, via the concept of steering [9]. Based on this approach,
we derive Bell inequalities detecting genuine multipartite
nonlocality for an arbitrary number of systems of arbitrary
dimension. Finally, we show that the simplest of our in-
equalities defines facets of the relevant polytopes of corre-
lations and study their quantum mechanical violations.
Simple approach to Svetlichny’s inequality.—To make

the main idea of our approach clear, we first focus on the
simplest scenario featuring three separated parties Alice,
Bob, and Charlie. Each party (labeled by j) is asked to
perform a measurement Xj (chosen among a finite set)

yielding a result aj with j ¼ 1; 2; 3. Thus the experiment

is characterized by the joint probability distribution
Pða1a2a3jX1X2X3Þ. There exist different notions of non-
locality which the correlations P can exhibit.
First, the experiment can display ‘‘standard’’ nonlocal

correlations; that is, the probability distribution P cannot
be written under the local form

PLða1a2a3Þ ¼
Z

d��ð�ÞP1ða1j�ÞP2ða2j�ÞP3ða3j�Þ; (1)

where � is a shared local variable and the measurement
inputs Xj are omitted for simplicity. To test for such type of

nonlocality, one uses standard Bell inequalities.
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However, this notion of nonlocality does not capture the
idea of genuine multipartite nonlocality. For instance, in
the case where Alice and Bob are nonlocally correlated, but
uncorrelated from Charlie, it would still follow that P
cannot be written in the form (1), although the system
features no genuine tripartite nonlocality.

To detect genuine multipartite nonlocality, one needs to
ensure that the probability distributions cannot be repro-
duced by local means even if (any) two of the three parties
would come together and act jointly—and consequently
could reproduce any bipartite nonlocal probability distri-
bution. Formally, this corresponds to ensuring that P can-
not be written in the form

PBða1a2a3Þ¼
X3
k¼1

pk

Z
d��ijð�ÞPijðaiajj�ÞPkðakj�Þ; (2)

where fi; jgSfkg ¼ f1; 2; 3g, and the sum takes care of
different bipartitions of the parties. In the following we
shall refer to such models as ‘‘bipartition models.’’ A prob-
ability distribution P which cannot be expressed in the
above form features genuine tripartite nonlocality; to be
reproduced classically, all three parties must come to-
gether. Clearly, standard Bell inequalities can, in general,
not be used to test for genuine multipartite nonlocality, and
one needs better adapted tools.

From now on, we shall focus on the case where each
party performs one out of two possible measurements. We
denote the measurements of party j by Xj and X

0
j, and their

results by aj and a0j. Considering the case where aj; a
0
j 2

f�1; 1g, Svetlichny [3] proved that the inequality

S3 ¼ a1a2a
0
3 þ a1a

0
2a3 þ a01a2a3 � a01a

0
2a

0
3 þ a01a

0
2a3

þ a01a2a
0
3 þ a1a

0
2a

0
3 � a1a2a3 � 4 (3)

holds for any probability distribution of the form (2). Thus
a violation of inequality (3) implies the presence of genu-
ine tripartite nonlocality, and hence of genuine tripartite
entanglement (regardless of the Hilbert space dimension
[10]). The above polynomial should be understood as a
sum of expectation values; for instance, a1a2a

0
3 means

Eða1a2a03Þ, the expectation value of the product of the

outcomes when the measurements are X1, X2, and X0
3.

We now start by rewriting inequality (3) as

S3 ¼ CHSHa03 þ CHSH0a3 � 4; (4)

where CHSH ¼ a1a2 þ a1a
0
2 þ a01a2 � a01a

0
2 is the usual

Clauser-Horne-Shimony-Holt polynomial [11] and
CHSH0 ¼ a01a02 þ a01a2 þ a1a

0
2 � a1a2 is one of its

equivalent forms, obtained by inverting the primed and
nonprimed measurements; equivalently one could apply
the mapping a2 ! a02 and a02 ! �a2.

The main point of our observation is now the following:
It is the input setting of Charlie that defines which version
of the CHSH gameAlice and Bob are playing.WhenC gets
the input X0

3, then AB play the standard CHSH game; when

C gets the inputX3,AB playCHSH0. From this observation,

two simple arguments show immediately that S3 � 4 holds
for any bipartition model of the form (2).
Argument 1. Consider the bipartition AB=C. Although

AB are together, and could thus produce any (bipartite)
nonlocal probability distribution, they do not know which
CHSH game they are supposed to play, as C is separated.
Thus they are effectively playing the average game
�CHSH� CHSH0 (the signs specifying which game is
played depend on the outputs of C). It can be checked
that the algebraic maximum of any of these average games
is 4 [12]. Hence, S3 � 4 for the bipartition AB=C.
Argument 2. For the bipartition A=BC, B knows which

version of the CHSH game he is supposed to play with A,
since he is together with C. However, CHSH being a non-
local game, AB cannot achieve better than the local bound
(i.e., CHSH ¼ 2 or CHSH0 ¼ 2), as they are separated
[13]. Thus it follows that S3 � 4. Note that the same
reasoning holds for the bipartition B=AC.
From these arguments, it follows that inequality (4)

holds for any correlation of the form (2). Note that since
the polynomial S3 is invariant under permutation of parties,
the proof already follows by applying either one of the two
arguments given above. However, using both arguments
above allows one in principle to deal with polynomials
which are not invariant under permutation of parties.
Furthermore, expressing Svetlichny’s inequality under

the form (4) allows one to understand its optimal quantum
mechanical violation. Suppose ABC share a three qubit

Greenberger-Horne-Zeilinger (GHZ) state jc i ¼ ðj000i þ
j111iÞ= ffiffiffi

2
p

. From (4) it is clear that C should choose his
measurement settings in order to prepare for AB the state
that is optimal for the corresponding CHSH game, i.e., a
maximally entangled state of two qubits. Let Alice and
Bob choose measurements which are optimal for CHSH—

X1 ¼ �x and X0
1 ¼ �y for A; X2 ¼ ð�x � �yÞ=

ffiffiffi
2

p
and

X0
2 ¼ ð�x þ �yÞ

ffiffiffi
2

p
for B. It is then straightforward to

check that the measurements of C must be X3 ¼ �x and
X0
3 ¼ ��y. For instance, when C measures �x and gets

outcome �1, he prepares the state j��i ¼ ðj00i �
j11iÞ= ffiffiffi

2
p

for AB which is optimal for the CHSH game.
Note that, given the measurement of A and B, the state

j��i gives CHSH ¼ �2
ffiffiffi
2

p
; thus the output of C ensures

that the overall sign is positive. Similarly, when C mea-
sures ��y and gets outcome �1, he prepares for AB the

state j ~��i ¼ ðj00i � ij11iÞ= ffiffiffi
2

p
. Given the measurements

of A and B, the state j ~��i gives CHSH0 ¼ �2
ffiffiffi
2

p
. Thus

ABC achieve the score of S3 ¼ 4
ffiffiffi
2

p
, which is the optimal

quantum violation as can be checked using the techniques
of Ref. [14]. Moreover, the idea of steering also allows one
to understand the resistance to (white) noise of this quan-
tum violation. Basically, Svetlichny’s inequality should be
violated if and only if the state of AB (prepared by a
measurement of C) violates CHSH. Thus we expect the
resistance to noise of the GHZ state for Svetlichny’s in-
equality to coincide with the resistance to noise of a
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maximally entangled two qubit state for CHSH. Indeed, in

both cases we get the critical visibility w ¼ 1=
ffiffiffi
2

p
.

The form of inequality (4) also suggests a straightfor-
ward generalization to an arbitrary number of parties m:

Sm ¼ Sm�1a
0
m þ S0m�1am � 2m�1; (5)

where S0m�1 is obtained from Sm�1 by interverting primed
and nonprimed settings. From argument 2 above it is clear
that if inequality Sm�1 � 2m�2 holds for any bipartition of
the m� 1 parties, then inequality (5) holds for any bipar-
tition where partym is not alone. The fact that (5) holds for
this partition as well follows from the fact that the poly-
nomial Sm is symmetric under permutation of the parties
(see below). Inequalities (5) are the generalizations of
Svetlichny’s inequality presented in Ref. [6].

Detecting genuine multipartite nonlocality in systems of
arbitrary dimension.—The form (4) suggests further gen-
eralizations.We now present a family of inequalities detect-
ing genuinemultipartite nonlocality for scenarios involving
an arbitrary number of parties and systems of arbitrary
dimension. The main idea here consists of replacing the
CHSH expression in (4) with the Collins-Gisin-Linden-
Massar-Popescu (CGLMP) expression [15], which gives
bipartite Bell inequalities for systems of arbitrary dimen-
sion. Here we use the form of CGLMP of Ref. [16]; that is,

S2;d ¼ ½a1 þ a2� þ ½a1 þ a02�� þ ½a01 þ a2��
þ ½a01 þ a02 � 1� � d� 1; (6)

where ½X� ¼ Pd�1
j¼0 jPðX ¼ jmod dÞ and ½X�� ¼ ½�X�.

Note that for convenience the measurement outcomes
are now denoted aj 2 f0; 1; . . . ; d� 1g. Note also that for

d ¼ 2, the CGLMP inequality reduces to CHSH.
To construct S3;d we use the idea of Eq. (4). First we

define S02;d, an equivalent form of S2;d [17] obtained using

½� � �� ! ½� � � þ 1�� and ½� � ��� ! ½� � ��: (7)

Next we construct S3;d ¼ S2;d � a03 þ S02;d � a3 and obtain

S3;d¼½a1þa2þa3þ1��þ½a1þa2þa03�þ½a1þa02þa3�
þ½a01þa2þa3�þ½a1þa02þa03��þ½a01þa2þa03��
þ½a01þa02þa3��þ½a01þa02þa03�1��2ðd�1Þ;

(8)

where the rule � to include the third party works by simply
inserting its outcomes (a3 or a03) into the brackets. In the

case d ¼ 2, this rule reduces to Eq. (4).
From the fact that S2;d is a Bell inequality and from

argument 2, it follows that the inequality (8) holds for
the bipartitions A=BC and B=AC. Moreover, since the
polynomial S3:d is symmetric under permutation of the
parties, the inequality (8) holds for any bipartition.

This construction can be generalized to an arbitrary
number of parties m. Specifically, we take

Sm;d ¼ Sðm�1Þ;da0m þ S0ðm�1Þ;dam � 2m�2ðd� 1Þ; (9)

where S0ðm�1Þ;d is obtained from Sðm�1Þ;d using the rule (7).

For instance, for the case of m ¼ 4 parties we obtain

S4;d ¼ ½a1þa2þa3þa4þ 1�þ ½a1þa2þa3þa04þ 1��
þ ½a1þa2þa03þa04�þ ½a1þa02þa03þa04��
þ ½a01þa02þa03þa04� 1�þ �� � � 4ðd� 1Þ; (10)

where terms obtained by permuting the players are
omitted.
Proof of inequality (9).—The proof that (9) holds for

any bipartition of the m players is again based on argu-
ment 2 and goes by induction. Let us suppose that
(i) Sðm�1Þ;d � 2m�3ðd� 1Þ holds for any bipartition of

the m� 1 parties and that (ii) Sðm�1Þ;d is invariant under

any permutation of parties and contains all possible 2m�1

terms. Then, it follows from (i) that Sm;d holds for all

bipartitions, except for the one in which party m is alone.
To deal with this last bipartition, we need to show that

the polynomial Sm;d is invariant under any permutation of

parties. This is done in two steps. First, note that by
construction Sm;d contains all 2m possible terms. So it

remains to be shown that all terms featuring a given
number of unprimed inputs appear with the same type of
brackets. To see this, notice that the brackets associated
with terms with an increasing number of unprimed mea-
surements follow a regular pattern; terms featuring only
primed measurements have ½. . .� 1�; terms with one un-
primed measurement have ½. . .��; terms with two unprimed
measurements have ½. . .�, etc. In order to determine the
bracket of the following terms, one simply iterates the rule
(7). So, the bracket of terms featuring k unprimed mea-
surements is obtained by starting from the bracket ½. . .� 1�
and iterating k times the rule (7). Now, note that terms in
Sm;d featuring a fixed number of unprimed measurements k
can come from two possible terms: first, from terms in
Sðm�1Þ;d featuring k unprimed measurements; second from

terms in S0ðm�1Þ;d featuring k� 1 unprimed terms. From the

pattern described above, it follows that both of these terms
appear within exactly the same type of bracket. Thus we
have that Sm;d is symmetric under permutation of the

parties, which completes the proof. j
Note that the arguments presented above also allow us to

construct Sm;d directly using rule (7) starting from the

bracket that contains only primed terms. Moreover, it can
be shown that Sm;2 is equivalent to the generalizations of

Svetlichny’s inequalities given in Ref. [6].
Tightness.—Among Bell inequalities, those which define

facets of the polytope of local correlations are of particular
interest, since they form a minimal set of inequalities to
characterize local correlations [18]. These inequalities are
referred to as ‘‘tight’’ Bell inequalities. In this Letter, we
focus on Bell-type inequalities detecting genuine multi-
partite nonlocality. These inequalities are thus satisfied by
any bipartition model of the form (2). Indeed the set of
bipartition correlations also forms a polytope—which is
strictly larger than the local polytope [19]. Here we have
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checked that inequalities (8) and (10) are facets of the
respective polytope for d ¼ 2; 3. We conjecture that all
inequalities (9) correspond to facets.

Quantum violations.—Finally we discuss the quantum
violation of our inequalities. In the case of Svetlichny’s
original inequality, it turned out that writing the inequality
in the form (4) naturally leads us to consider steering in
order to find the optimal quantum violation. Indeed, since
the structure of our inequalities (9) is based on (4), we
follow a similar approach here, which will lead us to the
optimal quantum violations as well.

First we recall that, in the bipartite case and for d ¼ 3,
the maximal violation of the CGLMP inequality (6) is
obtained by performing measurements on a partially en-
tangled state of two qutrits given by jc 2i ¼ ðj00iþ
�j11i þ j22iÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ �2
p

, where � ¼ ð ffiffiffiffiffiffi
11

p � ffiffiffi
3

p Þ=2 [20].
The optimal measurements are so-called Fourier transform
measurements [15,21]; the basis is defined by the nonde-
generate eigenvectors jui¼ 1ffiffi

3
p P

2
v¼0 exp½2i�3 vð�mþuÞ�jvi

for party m, where �1 ¼ 0, �0
1 ¼ �1=2, and �2 ¼ 1=4,

�0
2 ¼ �1=4. This gives S2;3 ¼ 1:0851, corresponding to a

resistance to (white) noise of w ¼ 0:6861.
Nowmoving to the case of three parties, it appears natural

to choose the measurements of Alice and Bob to be the ones
which are optimal for CGLMP (i.e., as above). Next we
choose the tripartite state and Charlie’s measurements to be
such that, by measuring his system, C prepares the desired
state for A and B. For instance, we can take simply jc 3i¼

1ffiffiffiffiffiffiffiffiffi
2þ�2

p ðj000iþ�j111iþj222iÞ and fix Charlie’s measure-

ments to be Fourier transform as well—we take �3¼1=2
and �0

3 ¼ 0. With these parameters we obtain the violation

S3;3¼2:1703, whichwe have checked to be the optimal qua-

ntum violation using the techniques of Ref. [14]. Note also
that the resistance to noise of jc 3i here isw ¼ 0:6861, which
corresponds exactly to that obtained for CGLMP with jc 2i.

From the structure of our inequalities (9), we conjecture
that this idea of steering always provides the optimal

quantum violation, obtained from the state jc mi ¼
ðj0i	m þ �j1i	m þ j2i	mÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ �2
p

and Fourier transform
measurement. From this we expect the resistance to noise
to be independent of the number of parties m and given by
w ¼ 0:6861. We could check numerically that this is in-
deed the case for S4;3. Also, we expect a similar behavior

for higher dimensions d.
Conclusion.—The main focus of this Letter is to provide

an intuitive approach to Bell-type inequalities detecting
genuine multipartite nonlocality. First, we provided a
natural form for Svetlichny’s inequality, which allows
one to better understand its structure as well as its quantum
violation. Based on this understanding, we then derived a
family of Bell-type inequalities detecting genuine multi-
partite nonlocality for an arbitrary number of systems of
arbitrary dimensionality. Finally, our approach suggests

other possible generalizations. For instance it would be
interesting to investigate the case where the parties can
perform more than two measurements.
We thank D. Cavalcanti, S. Popescu, S. Pironio, O.

Gühne, and P. Skrzypczyk for insightful discussions. We
acknowledge financial support from the UK EPSRC, the
ERC-AGQORE, and the SwissNCCRQuantumPhotonics.
Note added.—Recently, we became aware of the work of

Ref. [22], which presented an inequality sharing similar
properties with our inequality Eq. (9).
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