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We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse

durations, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals

explicitly the individual contributions of the one-step and two-step processes.We also expose the role gauge

invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.
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Electron-positron pair production, at the focus of an
intense laser, is currently a topic of considerable interest
due to the development of light sources such as the extreme
light infrastructure [1]. As is typical for particle scattering
experiments, many different processes may contribute to
the final yield of pairs. It is important to be able to judge the
relative importance of these processes and distinguish their
contributions from each other. In the SLAC E144 experi-
ment [2], pairs were produced by colliding a (low intensity)
laser with the SLAC electron beam; high energy photons
radiated by the electrons then combined with photons in the
laser to produce pairs. In that experiment, a process called
‘‘trident’’ may also have produced pairs. However, its con-
tribution could only be evaluated approximately, since no
exact expression for the trident amplitude was available,
nor has one been given to date [3]. Accounting theoretically
for all relevant effects in modern laser experiments is a
formidable challenge. As well as contributions from pro-
cesses such as trident (alongwith, for example, vacuum pair
production [4] and cascades [5]), one would like to include
effects due to the properties of the laser itself, such as their
ultrahigh intensity (currently 1022 W=cm2), ultrashort du-
ration (measured in femtoseconds or even attoseconds) and
tight focus (focal diameter of the order of 10 microns).

In this Letter, we present the first complete calculation of
the trident process. We include high-intensity effects by
treating the laser field nonperturbatively and exactly. We
include finite size effects by allowing finite pulse duration.
We begin by describing the essential features of the trident
process, modeling the laser as a null field and using Volkov
solutions to describe the scattered particles. Key aspects of
existing calculations are discussed, and shown to be un-
physical due to violations of the Ward identities of QED.
We then calculate the scattering amplitude, emphasizing its
physical content, and relate our results to the optical theo-
rem. We use gauge invariance to simplify the final expres-
sion for the emission rate, and discuss approximations
useful to the high intensity regime.

We consider an electron, incident upon a laser field,
emitting a photon. This photon then combines with
photons in the laser to produce an electron-positron pair.
The relevant Feynman diagram is shown in Fig. 1. We take

this background to be a plane wave, with field strength
F�� � F��ðk � xÞ, where the momentum k� is lightlike, so

k2 ¼ 0. The laser frequency is ! ¼ jkj. Our treatment
holds for arbitrary k � x dependence: in particular, we
have finite pulse duration when F�� vanishes, or goes

rapidly to zero, outside of some k � x range.
Figure 1 actually describes two processes. The first is

‘‘one step,’’ in which the intermediate photon is virtual:
this is the process traditionally referred to as trident. The
second process is ‘‘two step,’’ in which a real photon is
scattered from the incoming electron (allowed in a back-
ground field via nonlinear Compton scattering [6]), and
this real photon then goes on to create a pair via stimulated
pair production [7]. This was the process of interest in the
SLAC experiment. Since the Feynman diagram in Fig. 1
makes no distinction between these processes, we will
refer to the full diagram as ‘‘trident,’’ and use the notions
of one- and two-step processes to distinguish the two
contributions. The trident S-matrix element is easily writ-
ten down, using strong-field QED, in terms of the photon
propagator G�� and Volkov solutions c j carrying the

asymptotic momenta pj in Fig. 1 [8]:

Sfi ¼ e2
Z

d4x
Z

d4y �c 2ðxÞ��c 1ðxÞ
�G��ðx� yÞ �c 3ðyÞ��cþ

4 ðyÞ � ðp2 $ p3Þ: (1)

The Volkov solutions also carry a dependence on k � x, and
k � y, which describes the ‘‘dressing’’ of the particles by
the background. One trades this dependence, via Fourier
transform, for new variables r and s: in the periodic plane
wave case, the dressing is responsible for the shifted
electron mass, and the Fourier transform reduces the

FIG. 1. The trident process. Double lines represent the fermion
propagator in the background field. The second term accounts
for the exchange of indistinguishable fermions.
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S-matrix element to a discrete sum over processes involv-
ing different numbers of ‘‘laser photons’’ [9]. Our continu-
ous r and s are the analogues of photon number for pulsed
plane waves (see [7]). After this, the x and y integrals
trivially yield two delta functions conserving four momen-
tum. One of these fixes the intermediate photon momentum
k0, and we have, writing �p � p1 � p2 and pout � p2 þ
p3 þ p4 from here on,

Sfi ¼ ð2�Þ2e2
Z

dr
Z

dsMðr; sÞ�4ðpout � p1 � rk� skÞ

� 1

k02 þ i�

��������k0¼�pþrk
�ð2 $ 3Þ: (2)

The expression for M will be given soon: it is lengthy and
we do not need it yet. The Fourier transformed (Feynman
gauge) photon propagator is g��=ðk02 þ i�Þ. The remain-

ing delta function, above, sees the asymptotic momenta
and hence the free electron mass, not the shifted mass of
the infinite plane wave calculations; this is a consequence
of allowing finite pulse duration, just as is observed in [7]
for stimulated pair production and in [10] for nonlinear
Compton scattering in pulsed fields. From the delta func-
tion in (2) it becomes clear that r and s parametrize the
energy momentum taken from the laser.

In the literature, a divergence has been identified in (1),
arising from the pole in the photon propagator in the two-
step process, i.e., when enough energy is taken from the
background to put the photon on shell and k02 ¼ 0. This
divergence was attributed to the infinite temporo-spatial
extent of the (periodic plane wave) background considered.
Based on this, it was suggested that the divergence could be
dealt with by modifying the photon propagator according
to [11]

1

k02
!! 1

k02 þ 2ijk00j=T
; (3)

which damps the propagator outside of a chosen, fixed,
temporal range T, in order to model finite pulse duration.
However, the structure of propagators and vertices in QED
is severely restricted by gauge invariance, violations of
which are measured by the Ward identities [12]. The
prescription (3) manifestly violates the Ward identity [13]

k0�hA�ðk0ÞA�ðqÞi ¼ k0�
k02

�4ðk0 þ qÞ; (4)

which is sufficient to reject (3). We briefly state some
additional physical reasons. First, the origin of the diver-
gence cannot be the infinite extent of the background. Any
background which permits the two-step process, producing
an on-shell intermediate photon, will admit the k02 ¼ 0
divergence, independent of the background’s spacetime
support (even if the theory contains a natural analogue of
the cutoff scale T, for example). Second, there is also no
reason why any chosen T should be preferred by the theory
over any other. The prescription (3) also breaks manifest
Lorentz invariance. While this may not be considered too
serious, given that the background field already introduces

preferred directions in spacetime, these directions are
lightlike, not timelike as (3) implies. Using (3) also gives
a T-dependent correction to the divergence-free one-step
process, and leaves unphysical factors of T in the weak
field limit where all background effects should become
negligible. It is therefore difficult to ascribe a physical
meaning to results following from (3).
The resolution of the above problem is simple: in a

complete treatment, there is no divergence. It appears
only when one neglects the pole prescription already con-
tained in Feynman propagators. The photon propagator is
really 1=ðk02 þ i�Þ and one must remember to take the
infinitesimal � ! 0þ. To show there is no divergence,
we return to (2), where the propagator is evaluated at
k0 ¼ �pþ rk. This can certainly go on shell, so k02 ¼ 0,
for certain r. This behavior may be exposed by recalling
the distributional result:

1

k02 þ i�
¼�!0þ �i��ðk02Þ þ P

1

k02
; (5)

which clearly separates contributions from, respectively,
real (on-shell) and virtual (off-shell) photons. We will
reaffirm this statement below. Here, we perform the essen-
tial step, inserting (5) into (2). In the first term, the delta
function is �ðk02Þ ¼ �ð2rk � �pþ �p2Þ and is therefore
eliminated by performing the r integral. This fixes r ¼
��p2=ð2k � �pÞ � r0 so the propagator’s pole fixes, quite
naturally, the energy transfer from the laser such that the
photon goes on shell, i.e., such that the two-step process
occurs. There is no divergence here, nor any need to de-
form the theory along the lines of (3). [Note, the denomi-
nator of r0 is nonzero because k � �p ¼ k � ðp3 þ p4Þ> 0,
using the momentum conservation law in (2).)] To proceed,
one eliminates the s integral using one component of the
delta function in (2). This is easily done in lightfront
coordinates x� :¼ x0 � x3, x? :¼ fx1; x2g, and q� ¼
ðq0 � q3Þ=2 for momenta. Since the laser momentum k�
is lightlike, we may choose kþ to be its only nonzero
component. Hence, s appears only in the qþ component
of the delta function, which eliminates the s integral and
sets s ¼ ðp2

out �m2Þ=ð2k � p1Þ � r � sr. Three compo-
nents of the delta function remain, conserving momentum
in the � and ? directions, transverse to the laser. Writing
�lfðqÞ � �2ðq?Þ�ðq�Þ=kþ, the S-matrix element is

Sfi ¼ 2e2�2�lfðpout � p1Þ �
� �i�

2k � �pMðr0; sr0 Þ

þ
Z

drMðr; srÞP 1

ð�pþ rkÞ2 � ð2 $ 3Þ
�
: (6)

This completes the calculation of Sfi. It should be clear

from (5) that the off- or on-shell parts of (6) correspond
precisely to the one- and two-step processes. Let us confirm
this, which will also serve as a check on Sfi before moving

on to the cross section. Consider first the one-step process,
with overall momentum conservation given by the explicit
delta function in (2). Squaring the argument of the delta
function, one finds that rþ s > 4m2=ðk � p1Þ, which states
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that the total incoming energy (that of the initial electron
and that taken from the laser), must be sufficient to produce
three particles of rest massm. This is the only constraint in
Sfi if the photon is off shell, k02 � 0, and we pick up the

principal value term. This is the ‘‘trident’’ contribution in
the old nomenclature. (Again, there is no dependence on the
shifted mass found in a periodic planewave.) Consider now
the two-step process, which has two momentum conserva-
tion relations, p1 þ rk ¼ p2 þ k0 for nonlinear Compton
scattering and k0 þ sk ¼ p3 þ p4 for stimulated pair
production. Squaring, one finds that for the individual

processes to occur, r > 0 and s > 2m2

k�k0 . Using the overall
delta function in (2), it is straightforward to show that the
fixed parameters r0 and sr0 which appear in our on shell part
obey r0 > 0 and rs0 > 2m2=k � �p. Recalling that k � �p ¼
k � k0 evaluated on shell, we recover the previous con-
straints. Our solution thus contains the correct kinematics
of both the one- and two-step processes, which are de-
scribed precisely by the off- and on-shell parts of (5).
Thus, our solution allows the contributions of these pro-
cesses to be individually calculated and compared.

The identity (5) also corresponds to a split into real and
imaginary parts. From the optical theorem for scattering
amplitudes (that is, unitarity of the S matrix), one expects
the appearance of imaginary, or absorptive, parts to corre-
spond to the excitation of real rather than virtual inter-
mediate states [14,15]. Indeed, we have seen that the
imaginary part of (5) corresponds to the intermediate
photon becoming real. The existence of this imaginary
part is entirely due to the dressing of the fermions by the
background: in cutting language, the dressing allows one
to perform a cut through Fig. 1 which yields physical,
nonzero scattering amplitudes, those for nonlinear
Compton scattering and stimulated pair production. (The
trident amplitude itself may be obtained by cutting the two-
loop fermion propagator [16].) Our result therefore appears
to contain a rather novel example of the optical theorem at
tree level, made possible by the background. We hope to
investigate this further in the future.

In the remainder of this Letter we give the complete
calculation of the emission rate. We will also show how
gauge invariance simplifies the final results.

Our background field has potential A�ðk � xÞ ¼
fjðk � xÞaj, where j is summed over the transverse

directions. The polarization vectors obey ai � k ¼ 0,
ai � aj ¼ �m2a2=e2�ij which defines an invariant, dimen-
sionless amplitude a. From the corresponding Volkov so-
lutions, we define

Jðp; b; cÞ ¼ � 1

2k � p
Z c

b
d�2eAð�Þ � p� e2A2ð�Þ;

Sðp; k � xÞ ¼ 14 þ e

2k � pAðk � xÞk:
(8)

These are combined into ‘‘nonlinear Compton,’’ ��, and
‘‘pair production,’’ ��, parts as follows (we denote the

reverse-ordered S by Ŝ):

��ðk � xÞ :¼ �up2
Ŝðp2; k � xÞ��Sðp1; k � xÞup1

� exp½iJðp2; k � x;1Þ þ iJðp1;�1; k � xÞ�;
��ðk � yÞ :¼ �up3

Ŝðp3; k � yÞ��Sð�p4; k � yÞvp4

� exp½iJðp3; k � y;1Þ þ iJð�p4;1; k � yÞ�:
The limits in J are prescribed by the Lehmann, Symanzik,
and Zimmermann reduction formula for the trident ampli-
tude. The product of the Fourier transforms of these parts
gives us the amplitude Mðr; sÞ from above,

Mðr; sÞ ¼
Z

d���ð�Þeir�
Z

d’��ð’Þeis’ � ð2 $ 3Þ
� ~��ðrÞ~��ðsÞ � ð2 $ 3Þ: (9)

To expose the further role of gauge invariance, we give the

explicit form of the pair production part ~�� (from which

one may write down ~�� by crossing symmetry):

~��ðsÞ ¼ �up3

�
��B0ðsÞ � a2m2k�

2k � p3k � p4

kB3ðsÞ

þ X2
j¼1

e

2

�
ajk��

k � p3

� ��kaj

k � p4

�
BjðsÞ

�
vp4

:

All dependence on s (a ‘‘photon number’’) is contained in
four functions B0 . . .B3. For j ¼ 1, 2, 3, and writing
f3 � f21 þ f22, these are defined by (sum over n ¼ 1, 2, 3)

BjðsÞ :¼
Z

dzfjðzÞ exp½iszþ i�n

Z 1

z
dwfnðwÞ�; (10)

where the coefficients an may be read off from (8) and (9):

�n ¼ ean �
�

p4

k � p4

� p3

k � p3

�
n ¼ 1; 2;

�3 ¼ �a2m2

2

�
1

k � p4

þ 1

k � p3

�
:

(11)

The functions (10) are finite, provided the fj vanish asymp-

totically, as is the case for pulsed fields. We assume this
behavior from here on. (The periodic plane wave case may
be recovered in a suitable limit; see [17].) The fourth
function B0 is defined as in (10) but without any damping
factor of f under the integral. Consequently, B0 is the
Fourier transform of a pure phase, and some prescription
is required for calculating it, at least numerically.
Regularizations of this integral (or its equivalent in the
nonlinear Compton part of the amplitude) were suggested
in [18,19], but there is a more fundamental method of
defining B0: one appeals to gauge invariance. Making a
(quantum) gauge transformation in (2), one finds that Sfi is

gauge invariant provided that (sum over n ¼ 1, 2, 3)

sB0ðsÞ ¼ �nBnðsÞ; (12)

and similarly for analogous functions in ��. Hence, by
defining B0 in terms of the well-behaved Bj, gauge invari-

ance reduces the number of functions in play from four to
three. This result should be compared with Eq. (A3) in [9],
Eq. (6) in [10], and Eq. (23) in [10]: those expressions were
obtained either as identities of special functions or by
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regularization, but they are unified and explained physi-
cally by gauge invariance.

One now has all the necessary ingredients to calculate
(6). To obtain the full rate, one takes jSfij2 and divides out

the volume transverse to the pulse, as usual. The remaining
steps are to sum or average over spins and perform the final
state integrations, where again it is natural to use lightfront
variables. There are nine integrals, corresponding to three
momentum components for three outgoing particles. Three
of these are eliminated by the remaining �lf. Writing K for
the bracketed term in (6), one obtains, with � � e2=ð4�Þ,

R ¼ �2

4!2

�Y
p3;p4

Z d2p?
ð2�Þ3

Z 1

0

dp�
2p�

�
	ðp2�Þ
p2�

X
spins

jKj2
��������shell

:

The instruction ‘‘shell’’ indicates that each pþ is evaluated
on shell, i.e., pþ ¼ ðp2

? þm2Þ=ð4p�Þ, and p2, which is

eliminated by momentum conservation, obeys p2? ¼
ðp1 � p3 � p4Þ? and p2� ¼ ðp1 � p3 � p4Þ�. The re-

maining integrals are over the momenta of the produced
electron-positron pair. The full emission probability is a
function of the laser amplitude, a, the pulse geometry, and
the incoming momenta which appear through k � p1. This
completes the calculation.

Despite the length of the expressions involved, our final
result for the rate is not more complicated than that of the
periodic plane wave case in [11]. Comparing the expres-
sions therein with our own results, we find three real
differences. The first is that the discrete sums over photon
number are replaced by Fourier integrals over r and s. The
second is that the shifted mass plays, in general, no role in
our expressions. Finally, our Smatrix contains two distinct
terms corresponding to the one- and two-step processes.

An important step in the calculation of the rate is the
evaluation of the functions (10). In general, these must be
calculated numerically. In various limits, though, analytical
approximations exist. The weak field limit is an obvious
example: one simply expands everything in powers of the
field amplitude a. What is more interesting for modern
experiments is the high-intensity limit, which amounts to
a � 1. This is studied in [10] in the context of nonlinear
Compton scattering, using an asymptotic expansion of
the (equivalents of) the Bj. Let us adapt this to our trident

process: the idea is to look for points of stationary phase
in (12). However, one can show from the kinematics that
s� �jfjðk � xÞ � 0 8 k � x and hence no points of station-

ary phase exist. Thus, one can try to instead deform the
contours into the complex plane and use the method of
steepest descent. This well understood technique may be
applied immediately to the trident amplitude. It would be
interesting to try and understand the physics behind this
approximation inmore detail: as a first step, one could return
to the periodic plane wave case and attempt to establish a
connection between the saddle points in the complex plane
and the photon number, or the effective mass.

In conclusion, we have given the first full calculation of
trident pair production in a laser field, using strong-field

QED. We have included finite size effects due to the
ultrashort duration of modern pulses. Both the one-step
and two-step processes involved have been explicitly iden-
tified, and our results are in agreement with the optical
theorem. We have also revealed the role gauge invariance
plays, not only in the trident process, but also in nonlinear
Compton scattering and stimulated pair production,
through the relation (12). We remark that our approach is
equally valid for laser-assisted Møller scattering, as this is
just the crossed process of trident pair production: the
appropriate S-matrix element is obtained from (6) by tak-
ing the outgoing positron to be an incoming electron.
Contrary to recent claims in the literature, we have

shown that there is no divergence in the trident amplitude.
Despite this, the numerical methods previously employed
to calculate the amplitude are equally appropriate here. In
particular, one may now easily compare the contributions
of the one-step and two-step processes, as well as test the
oldWeizsäcker-Williams approximation for the former [3].
It will be extremely interesting to see what these inves-
tigations reveal.
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