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In this Letter, we show that switching between repulsive and attractive Casimir forces by means of

external tunable parameters could be realized with two topological insulator plates. We find two regimes

where a repulsive (attractive) force is found at small (large) distances between the plates, canceling out at

a critical distance. For a frequency range where the effective electromagnetic action is valid, this distance

appears at length scales corresponding to 1� �ð!Þ � ð2=�Þ��.
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The full experimental accessibility to micrometer and
submicrometer size physics and the possibility of develop-
ing applications has turned the understanding of phe-
nomena at these scales to be of fundamental importance.
Within this scenario, the Casimir force [1] arises when two
objects are placed near each other at distances of a few
micrometers. In the general case of two dielectrics, the
situation is well described by the theory developed by
Dzyaloshinskii et al. [2], where the optical response of
the material determines the magnitude and behavior of
the force. In the simplest case of a mirror symmetric
situation, a theorem ensures that the force is always attrac-
tive [3,4], resulting in a problem for nanomechanical de-
vices. To revert the sign, one must search nonsymmetric
situations, usually adding complexity to the problem. The
first Casimir repulsion proposal, known as Dzyaloshinskii
repulsion, was recently confirmed experimentally [5] and
it involves a third dielectric medium between the plates,
excluding the possibility of frictionless devices and quan-
tum levitation. In turn, vacuum mediated proposals include
magnetic versus nonmagnetic situations [6] and the use of
metamaterials [7–9]. In this Letter, we report a newmethod
for obtaining a twofold tunable Casimir repulsion. By use
of the optical properties of topological insulators (TI),
it is feasible to achieve all situations between repulsion
to attraction by using two controllable parameters: the
distance between dielectrics and the sign of the topological
magnetoelectric polarizability (TMEP) �, where the latter
allows us to tune the optical properties of the mentioned
materials.

TIs are characterized by a bulk insulating behavior
with metallic boundary states protected by time reversal
symmetry [10,11]. The topological protection of edge
states ensures their stability against nonmagnetic perturba-
tions. The 3D counterpart of this novel topological state
was shown to exist in a BixSb1�x alloy [12] and in the
stoichiometric crystals Bi2Se3, Bi2Te3, TlBiSe2, and
Sb2Te3 [13–15].

The Casimir force is intimately related to the optical
properties of the two dielectric bodies [2]. For instance,

consider the situation where two dielectric parallel semi-
infinite bodies (labeled 1 and 2) are placed at a distance d
from each other in vacuum. In this case, the Casimir energy
density (CED) stored by the plates is given by [16]

EcðdÞ
A@

¼
Z 1

0

d�

2�

Z d2kk
ð2�Þ2 log det½1�R1 �R2e

�2k3d�; (1)

where A is the plate area, k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ �2=c2

q
is the wave

vector perpendicular to the plates, kk is the vector parallel
to the plates, and � is the imaginary frequency defined
as ! ¼ i�. The matricesR1;2 are 2� 2 reflection matrices

of media 1 and 2 containing the Fresnel coefficients de-
fined as

R ¼ Rs;sði�;kkÞ Rs;pði�;kkÞ
Rp;sði�;kkÞ Rp;pði�;kkÞ

" #
; (2)

where Ri;j describes the reflection amplitude of an incident

wave with polarization i which is reflected with polariza-
tion j. The polarizations Rs (p) describe parallel (perpen-
dicular) polarization with respect to the plane of incidence.
The Casimir force per unit area on the plates is obtained by
differentiating expression (1). A positive (negative) force,
or equivalently a positive (negative) slope of EcðdÞ, corre-
sponds to attraction (repulsion) of the plates.
The electromagnetic response of a dielectric, which

defines the reflection matrices, is governed by Maxwell’s
equations derived from the ordinary electromagnetic ac-
tion S0 ¼

R
dx3dt½�E2 � ð1=�ÞB2�, with E and B the

electric and magnetic fields, respectively. TIs in three
dimensions are well described by adding a term of the
form S� ¼ ð�=4�2ÞR dx3dt�E � B, where � ¼ 1=137 is
the fine structure constant and � is the TMEP (axion field)
[11,17]. Because of time reversal symmetry, this term is a
good description of the bulk of a trivial insulator (e.g.,
vacuum) when � ¼ 0 and of the bulk of a TI when � ¼ �.
However, the axion coupling is only a good description of
both the bulk and the boundary of a TI when a time reversal
breaking perturbation is induced on the surface and the
system becomes fully gapped. In this situation, � can be
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shown to be quantized in odd integer values of � such that
� ¼ ð2nþ 1Þ�, where n 2 Z. The value of n is deter-
mined by the nature of the time reversal breaking pertur-
bation, which could be controllable experimentally by
covering the TI with a thin magnetic layer. In particular,
positive or negative values of � are related to different
signs of the magnetization on the surface [18]. As we
will demonstrate in what follows, the Casimir force is
very sensitive to the value of �, and the tunability of its
sign will allow us to describe a mechanism for switching
between repulsive and attractive forces.

The electromagnetic response of a system in the pres-
ence of a � term is still described by the ordinary Maxwell
equations, but the constituent relations which define the
electric displacement D and the magnetic field H acquire
an extra term proportional to � [19], D ¼ �Eþ �ð�=�ÞB
and H ¼ B=�� �ð�=�ÞE. We note that Eq. (1) can be
easily modified to take into account magnetoelectric cou-
plings (this happens also in chiral metamaterials [9]). The
result is the same equation with the proper reflection
matrices. It is then possible to derive by means of ordinary
electromagnetic theory the reflection coefficients of a
TI-vacuum interface. For a TI characterized by a frequency
dependent dielectric function �ð!Þ and a TMEP �, the
reflection coefficients will take a symmetric form [20]
where the off-diagonal coefficient can be expressed as

Rs;pði�;kk; �Þ ¼ sgnð�Þrspði�;kk; �Þ; (3)

where rsp is an even function of �. When � ¼ 0, Rs;p ¼ 0,

leading to the usual attractive Casimir force due to the
nonmixing of polarizations [21]. When � � 0, the reflec-
tion coefficients mix polarizations and the sign of � plays a
crucial role on the sign of the Casimir force (see below). In
what follows we will consider that the surface of the TIs of
the Casimir system are covered by a thin magnetic layer as
shown in Fig. 1. This effectively turns the TI into a full
insulator (both in the bulk and on the surface) which can
be safely described with the TMEP and a dielectric func-
tion, as shown in earlier works [11,18]. Hence, to numeri-
cally compute the CED by means of (1), a model for the
dielectric function is necessary (we henceforth assume
� ¼ 1). Because of the low concentration of free carriers
in insulators the most general phenomenological model
to describe the optical response of a dielectric is a sum of
oscillators to account for particular absorption resonances
[21]. When only one oscillator is considered (see, however,
[22]), the dielectric function evaluated can be written as

�ði�Þ ¼ 1þ !2
e

�2 þ!2
R þ �R�

: (4)

In this model,!R is the resonant frequency of the oscillator
while !e accounts for the oscillator strength. The damping
parameter �R satisfies �R � !R, playing therefore a
secondary role. In what follows, we have rescaled
all quantities in units of !R, leaving the quantity

�ð0Þ � 1þ ð!e=!RÞ2 as the only parameter of the model.
A good candidate to be described by this model is the
TI TlBiSe2 [15]. This material has experimentally [23]
(neglecting free carrier contributions and assuming high
frequency transparency) �ð0Þ � 4 and has a single resonant
frequency near 56 cm�1. Other TI could need more oscil-
lators to be added in (4).
We have computed the CED between two TI plates

described by the TMEP �1 and �2 and the value of the
dielectric constant at zero frequency �ð0Þ by numerical
evaluation of expression (1). The results are summarized
in Figs. 2 and 3 where the CED is plotted against the
dimensionless distance �d � d!R=c. From Fig. 2(a) it is
clear that opposite signs of �1;2 lead to the existence of a

minimum ( �dm) where the net force is zero. The behavior is
attractive when both signs become equal, suggesting that
it is possible to tune the Casimir force by tuning the relative
signs of �, i.e., switching the magnetizations of the cover-
ings. The existence of a minimum is analytically shown
below in terms of the relative importance of the off-
diagonal terms (3) against the diagonal terms and in terms
of the relative sign of the TMEPs. At large distances the
diagonal terms dominate and the usual Casimir attraction
is recovered. At small distances, the off-diagonal terms
dominate and their sign determines whether the CED
approaches �1 (i.e., repulsive or attractive) leading
to a minimum at intermediate distances if the signs of
�1;2 are opposite.
To prove the existence of the minimum we consider the

Fresnel equations for TI obtained earlier in [20] which lead
to Eq. (3) added to the following properties of the dielectric
function: finite dielectric permittivity at zero frequency
[�ð0Þ<1] and high frequency transparency, �ð!Þ ! 1

FIG. 1 (color online). Different configurations of the Casimir
effect with identical TI covered with a thin magnetic layer.
(a) The magnetization is of the same sign on each surface,
resulting in a case where �1 ¼ �2 giving Casimir attraction. In
(b)–(d) the magnetizations have opposite signs on the surface
(�1 ¼ ��2) leading to attraction when d > dm, repulsion when
d < dm, and to a quantum levitation configuration at dm where
the net force is zero.
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when ! ! 1. For analytical traceability we assume
�1 ¼ ��2 � � and that the dielectric function (4) de-
scribes the TI, although the derivation does not depend
on the explicit form of the dielectric function as long as it
fulfils the mentioned conditions.

In (1) we can rescale � and kk to contain �d, which gives
an overall factor 1= �d3 and forces the reflection matrices to
be evaluated at the rescaled frequency and momenta �= �d
and kk= �d. Hence, Ecð �d ! 0Þ ! �1 and Ecð �d ! 1Þ ! 0
since the behavior of �ði�Þ ensures that the reflection
matrices are not singular when evaluated at i�= �d ! 0
and i�= �d ! 1.

The way the integral approaches these limits determines
the sign of Ecð �dÞ. For instance, if the integrand is positive
at small distances and negative at large distances, neces-
sarily a minimum exists at an intermediate distance �dm.
In what follows it will be shown that this is exactly what
happens unless �ð0Þ ¼ 1, where both limits are positive

and hence long-range repulsion is obtained. Under these
conditions the diagonal terms in (2) are equal for both TI
(which we label rs and rp), and the off-diagonal terms

given by (3) have opposite overall signs, but equal absolute
value given by the function rsp. Introducing these inside

(1) the integrand reads:

I ¼ log½1þ e�2kðrÞ
3 ð2r2sp � r2p � r2sÞ þ e�4kðrÞ

3 ðr2sp � rprsÞ2�;
(5)

where kðrÞ3 is now evaluated at the rescaled frequency and

momenta just as the reflection matrices. In the limit of
small distances ( �d ! 0) and using the high frequency
transparency of the dielectric function, it can be shown
that jrsj; jrpj � jrspj since the first are of order �2 and the

second are of order �. Hence the integrand is positive and
so Ecð �d ! 0Þ ! þ1.
Now we consider the limit of large distances ( �d ! 1).

In this limit, the reflection coefficients take the form rs ¼
½1� �ð0Þ � ��2�=D (a similar expression holds for rp) and

rsp ¼ 2j ��j=D, where D ¼ 1þ �ð0Þ þ ��2 þ ffiffiffiffiffiffiffiffiffi
�ð0Þp

�, � is

a frequency and momentum dependent function irrelevant
for the present discussion and �� ¼ ��=�. In this long
distance limit, depending on the values of �ð0Þ different
behaviors emerge. Since �ð0Þ 	 1 we now consider the
two extreme limits, one where �ð0Þ ¼ 1 and the other with
�ð0Þ 
 1.
In the limit where �ð0Þ 
 1, the condition jrsj; jrpj 


jrspj is always satisfied. When �ð0Þ is strictly infinity we

recover the ideal case of an ordinary metal with rs;p ¼ �1

and rsp ¼ 0. The integrand at large distances is a negative

quantity and so Ecð �dÞ approaches zero from negative
values. From the previous discussion at small distances
Ecð �dÞ ! þ1; therefore, there must be a minimum at an
intermediate distance 0< �dm <1 since the function must
cross the x axis. In the unrealistic case where �ð0Þ ¼ 1, one
can check that jrspj 
 jrsj; jrpj making Ecð �dÞ always
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FIG. 2 (color online). Casimir energy density [in units of E0 ¼ A@c=ð2�Þ2ð!R=cÞ3] as a function of the dimensionless distance �d for
!e=!R ¼ 0:45. In (a) �2 ¼ �� is fixed. Whenever sgnð�1Þ ¼ �sgnð�2Þ a minimum �dm appears, leading to a vanishing net force on
the plates. Increasing �1 within positive values suppresses the minimum shifting �dm towards lower values (if both signs are equal then
only attractive behavior occurs). Complete repulsion is achieved when one of the TMEP is much bigger than the other. (b) The optimal
situation �1 ¼ ��2 ¼ �. Different values of � show that the minimum is enhanced when the difference between the two values is as
small as possible (� ¼ �). Inset: Detailed behavior around the minimum for the case � ¼ 3�.
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FIG. 3 (color online). Effect of parameter �ð0Þ with fixed
�1 ¼ ��2 ¼ �. The effect of increasing �ð0Þ is to develop a
minimum, which shifts to smaller �dm as �ð0Þ is increased.
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positive for all distances. In this case there is no minimum
and the force is always repulsive. By this analytical analy-
sis and when �1 ¼ ��2 we expect that, as we increase �ð0Þ
from one, a minimum develops at an intermediate distance
�dm. This distance shifts to lower values as we increase �ð0Þ
until, at �ð0Þ ¼ 1, we recover the metallic case where
complete attraction occurs. In the case where �1 ¼ �2
the signs inside (5) change and make the logarithm to be
negative, recovering attraction at all intermediate distances
(for more details see [22]). The consistency of these ana-
lytical expectations is confirmed numerically with the
results shown in Figs. 2 and 3.

From these we infer that in order to enhance as much
as possible the minimum, it is necessary to search for
a situation where � � �1 ¼ ��2. The CED for different
values of � satisfying this condition are depicted in
Fig. 2(b). Under these circumstances the minimum is
more prominent when � ¼ �, i.e., when � takes its small-
est possible value. The general analytical analysis,
supported by the numerical evaluation for different
parameters, suggests that a simple experimental setup
(Fig. 1) could switch from complete Casimir attraction
to a stable quantum levitation regime by reversing the
magnetization of one of the layers covering one of the
TI. In this process the system will turn from a symmetric
situation where �1 ¼ �2, resulting in attraction to a non-
symmetric situation where the optimum condition is
satisfied (�1 ¼ ��2) and a stable minimum appears.

To conclude, for this appealing situation to be experi-
mentally accessible one has to search for realizations of!R

where the typical distances between the plates are at least
of order 0:1–1 �m. For a frequency range where the axion
Lagrangian is valid [17], the minimum is expected to
appear at a position where diagonal and off-diagonal terms
are similar in magnitude, i.e., length scales corresponding
to 1� �ð!Þ � 2

���. Low values of �ð0Þ (typically less

than 10) favor this situation since the minimum is realized
at larger distances. While the electromagnetic parameters
of TI are still not well characterized, a low �ð0Þ could be
achieved by using thin films or by air injection which
will lower the bulk dielectric response. For TlBiSe2 we
estimate from numerical integration that the minimum of
the CED appears at a distance of d ¼ 0:1 �m and with a
CED of the same order as for the usual metal-vacuum-
metal system at 1 �m, hence being still experimentally
accessible. We must note, however, that this estimation
requires a high TMEP value (�� 10�) in order to shift
the minimum to observable distances. Therefore the pro-
posed effect is on the verge of experimental accessibility
and should encourage experimental efforts to attain full
optical characterization of TI. We stress here that the only
effect of the magnetic coating is to gap the surface states.
We have estimated the parasitic magnetic forces between
the magnetic layers following [24]. The dipole-dipole

interaction is of the order of attoN at distances of 50 nm
and the magnetic Casimir force [24] is �1 fN, much
smaller than the force described here which is of the order
of 5 pN. The proposed effect could also be explored in
other magnetodielectric materials such as Cr2O3, which
can be described by a higher axion coupling [25]. However,
these materials induce more general magnetoelectric
couplings [26] which we will consider in a future work.
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