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We investigate nonlocality distillation using measures of nonlocality based on the Elitzur-Popescu-

Rohrlich decomposition. For a certain number of copies of a given nonlocal box, we define two quantities

of interest: (i) the nonlocal cost and (ii) the distillable nonlocality. We find that there exist boxes whose

distillable nonlocality is strictly smaller than their nonlocal cost. Thus nonlocality displays a form of

irreversibility which we term ‘‘bound nonlocality.’’ Finally, we show that nonlocal distillability can be

activated.
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Entanglement and nonlocality are both powerful resour-
ces for information processing [1,2]. While entanglement
has always been at the heart of quantum information
science, there has recently been a growing interest in
investigating nonlocality from an information-theoretic
perspective. On the one hand, quantum nonlocality allows
for the reduction of communication complexity [3], as well
as for information processing in the device-independent
setting [4], where one wants to achieve an information task
without any assumption on the devices used in the proto-
col. On the other hand, in trying to understand why quan-
tum nonlocality is limited [5], that is, why nonsignaling
correlations stronger than those allowed in quantum me-
chanics do not appear to exist in nature, it has been realized
that strong nonlocality enables a dramatic increase in
information-theoretic power compared to the quantum
case. For instance, certain postquantum correlations col-
lapse communication complexity [6–8], violate informa-
tion causality [9] and macroscopic locality [10], and
outperform quantum correlations for nonlocal games [11].

In general, in order to harness the information-theoretic
power offered by a given type of resource, it is essential to
understand how to quantify it. While this issue is rather
well developed in the case of quantum entanglement [1],
much less is known for nonlocality. We lack an adequate
theoretical framework for tackling this problem; thus, it is
still not clear today what is a good measure of nonlocality
and under which conditions two nonlocal correlations can
be considered as equivalent.

The first tentative measures of nonlocality were pro-
posed in the context of Bell experiments. One can consider,
for instance, the amount of violation of a Bell inequality or
the resistance to noise—or to detector inefficiency—of a
given set of correlations. However, it may happen that a set
of correlations does not violate a given Bell inequality even
if it is nonlocal. Moreover, it was recently shown that
nonlocality can be distilled [12]; that is, by locally pro-
cessing several copies of certain nonlocal correlations, one

can increase the amount of violation of a Bell inequality.
Thus, from an information-theoretic perspective, one needs
better adapted measures of nonlocality.
In the present Letter, we study measures of nonlocality

based on the Elitzur-Popescu-Rohrlich (EPR2) [13] decom-
position in the context of nonlocality distillation. The idea
of EPR2 consists of decomposing a given correlationP into
a purely local and a purely nonlocal part. The weight of the
nonlocal part, minimized over all possible decompositions,
then characterizes the nonlocality of P. The EPR2 decom-
position provides a natural framework for studying non-
locality distillation. Given N copies of P, corresponding to
the nonlocal correlation P�N, we identify two relevant
quantities. The first one is the distillable nonlocality, which
quantifies the amount of nonlocality that can be extracted
fromP�N. The second is the nonlocal cost, which quantifies
howmuch nonlocality is required in order to buildP�N . We
investigate these two quantities for a specific class of non-
local correlations in the two-copy scenario. Interestingly,
we uncover a form of irreversibility, in that for certain
undistillable correlations the nonlocal cost is strictly larger
than the distillable nonlocality. We term this effect bound
nonlocality in analogy to bound entanglement [14].
Exploiting a recent result of Fitzi et al. [15], we also provide
examples of bound nonlocality for all N > 2, including the
asymptotic limit (N ! 1). Finally, we demonstrate activa-
tion of nonlocal distillability, whereby an undistillable cor-
relation can enhance nonlocality distillation.
Measures of nonlocality.—We consider two remote par-

ties, Alice and Bob, who share some nonlocal correlation,
which from now on we shall refer to as a nonlocal box.
Formally, this box is represented by a joint probability
distribution PðabjxyÞ, where x and y denote the inputs of
Alice and Bob, respectively, and a and b their outputs.
We consider a measure of nonlocality based on the

EPR2 decomposition [13], which consists in decomposing
a nonlocal box P into a convex mixture of a local part and a
nonlocal part, that is,
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PðabjxyÞ ¼ ð1� pNLÞPLðabjxyÞ þ pNLPNLðabjxyÞ; (1)

where PLðabjxyÞ is a local probability distribution and
PNLðabjxyÞ is a no-signaling probability distribution. The
nonlocality of the box P, denoted CðPÞ, is then obtained by
minimizing the weight of the nonlocal part over all pos-
sible decompositions of the form (1), i.e.,

CðPÞ ¼ min
decompositions

pNL: (2)

It follows that, for the optimal decomposition, the nonlocal
part PNLðabjxyÞ has unit weight, i.e., CðPNLÞ ¼ 1. CðPÞ
can be interpreted as the nonlocal cost of the box P, in the
sense that this quantity represents the minimum amount of
nonlocal resources required in order to construct P [16].
Geometrically, CðPÞ can be seen as the distance between P
and the set of local boxes, relative to the closest extremal
nonlocal box.

An important property of CðPÞ is that it cannot on
average increase under local operations (LO) and is thus
a meaningful measure of nonlocality. Here local operations
include relabelling of inputs and outputs. Note that in
entanglement theory, the class of operations under which
entanglement cannot increase is LOCC, where CC stands
for classical communication. In the case of nonlocality,
communication between the parties is, however, not al-
lowed, since it is a nonlocal resource.

A defining property of the measure CðPÞ is that all
nonlocal resources are treated on an equal footing. More
precisely, all extremal nonlocal boxes are counted as
equally nonlocal. As such we do not require any knowl-
edge of the nonlocal part, namely, which extremal boxes it
involves. Since characterizing extremal nonlocal boxes is a
hard problem, this property appears very advantageous.
Moreover, it turns out that CðPÞ can be computed effi-
ciently by using a linear program [15] (see below).

In the present Letter, we deal with the scenario where
Alice and Bob share N copies of a given box P. Formally,
they share the probability distribution

P�NðabjxyÞ ¼ Pða1b1jx1y1Þ � � � � � PðaNbNjxNyNÞ;
(3)

where we use the vector notation a ¼ fa1; . . . ; aNg for the
string of Alice’s outputs and similarly for b, x, and y.

First we would like to quantify the nonlocal cost of
P�N . From the structure of P�N , it is easy to see that
the weight of the nonlocal part is less than or equal to 1�
½1� CðPÞ�N , which is simply one minus the weight of the
fully local part of the N boxes. However, this represents
only one possible decomposition of the form (1), and we
are by no means guaranteed that it is optimal. Indeed,
instead of being given N identical copies of P, we might
hold a box behaving exactly as P�N (i.e., represented by
exactly the same probability distribution) but made by
using less nonlocal resources. Therefore the correct mea-
sure of the nonlocal cost of P�N is given by its EPR2
decomposition, i.e., CðP�NÞ.

In the context of Clauser-Horne-Shimony-Holt (CHSH)
[17], when x, y, a, and b are all bits, it was recently shown
that nonlocality can be distilled [8,12]. More precisely, by
LO, which now includes wiring together several copies of a
box P, it is possible to obtain a box P0 which contains more
nonlocality. Note that in Refs. [8,12] the nonlocality of a
box was measured via its CHSH value, which, in this case,
coincides with the measure of nonlocality we adopt here.
It therefore appears natural to define the N-copy distil-

lable nonlocality of a box P, to be given by the maximal
nonlocality obtainable by wiring N copies of P, that is,

DðP�NÞ ¼ max
W

CðW½P�N�Þ; (4)

whereW is an N ! 1wiring; that is,W maps P�N to a box
P0 ¼ W½P�N� which features inputs and outputs of the
same size as the initial box P. A box P is said to be
N-copy distillable when DðP�NÞ>CðPÞ.
Now that we are in a position to quantify how much

nonlocality can be extracted from N copies of a box P, it is
natural to compare this quantity to CðP�NÞ, the nonlocal
cost of P�N. A first simple observation is that

CðPÞ � DðP�NÞ � CðP�NÞ: (5)

The left inequality follows from the fact that it is always
possible for Alice and Bob to apply a trivial wiring, which
consists in using only a single box and throwing away the
N � 1 remaining copies. The right inequality expresses the
fact that it is impossible to extract more nonlocality from a
box than the amount of nonlocality actually contained in
the box. Importantly, the inequalities (5) naturally link the
EPR2 decomposition with nonlocality distillation: CðPÞ<
CðP�NÞ is a necessary condition for distillation to be
possible.
A natural issue to investigate is reversibility. Can the

nonlocality contained in N copies of a box P always be
extracted via distillation? In other words, is DðP�NÞ ¼
CðP�NÞ? In the following, we will answer this question
in the negative. Furthermore, we will discuss an even
stronger form of irreversibility. There exist boxes P which
cannot be distilled, although N copies of P contain a
strictly larger amount of nonlocality than a single copy.
Formally, this means CðPÞ ¼ DðP�NÞ<CðP�NÞ. We term
this phenomenon bound nonlocality. Below, we provide
examples of bound nonlocal boxes in the two-copy setting,
as well as an example in the asymptotic limit.
Bound nonlocality.—From now on we focus on the

CHSH scenario, where x; y; a; b 2 f0; 1g. We consider a
two-dimensional section of the no-signaling polytope [18],
characterized as follows:

Pð�; �Þ � �PPR þ �Pc þ ð1� �� �ÞPf (6)

with �; � � 0 and �þ � � 1. Here we have used the
following probability distributions: PPRðabjxyÞ ¼ 1

4 ½1þð�1Þa�b�xy� is the Popescu-Rohrlich (PR) box, where
� is addition modulo 2; PcðabjxyÞ ¼ 1

4 ½1þ ð�1Þa�b�
is a local box featuring unbiased but perfectly correlated
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outputs; PfðabjxyÞ ¼ 1
8 ½2þ ð�1Þa�b�xy� is the isotropic

local box sitting on the CHSH facet below the PR box
(i.e., a convex mixture of the PR box and white noise). The
nonlocal cost of the boxes (6) is C½Pð�; �Þ� ¼ �, which
follows from the fact that the PR box is the only extremal
nonlocal box above the CHSH facet, on which both Pc and
Pf lie. Thus (6) is the optimal EPR2 decomposition of
Pð�; �Þ. Two classes of boxes that will be important below
are (i) isotropic nonlocal boxes PISOð�Þ � Pð�; 0Þ and
(ii) correlated nonlocal boxes PNLCð�Þ � Pð�; 1� �Þ.

The distillability of the boxes (6) was recently inves-
tigated. On the one hand, it was shown that isotropic non-
local boxes cannot be distilled in the case of two copies
[19]. On the other hand, Refs. [8,12,20,21] presented dis-
tillation protocols for correlated nonlocal boxes. Below,
these protocols are referred to as follows: FWW for the
protocol of Ref. [12], BS for Ref. [8], and ABLPSV for
Ref. [20].

We first focus on the case N ¼ 2 and characterize those
boxes of the form (6) which can be distilled. It is possible to
check, by an exhaustive search over all possible distillation
protocols (see [8] for details), that the FWWand ABLPSV
protocols are sufficient to characterize the distillable region.
That is, D½Pð�; �Þ�2�>C½Pð�; �Þ� if and only if Pð�; �Þ
can be distilled via the FWWor ABLPSV protocol.

Next we compute C½Pð�; �Þ�2�, the nonlocal cost of two
copies of Pð�; �Þ. This is done via a linear program [15],
which maximizes the weight of the local part, i.e., the
quantity pL ¼ 1� pNL. The maximal local part p	

L is the
optimal value of the linear program

max
Xn

j¼1

qj; (7)

subject to
Xn

j¼1

qjDjðabjxyÞ � P�2ðabjxyÞ; qj � 0;

where the first condition should be understood as a
vector inequality. Here DjðabjxyÞ denote the n ¼ 48 de-

terministic local strategies for the case of four inputs and
four outputs. The nonlocal cost is then given by
C½Pð�; �Þ�2� ¼ 1� p	

L.
The results are presented in Fig. 1. It shows three regions

of qualitatively different kinds of boxes. The first region (I)
corresponds to 2-distillable boxes, for which CðPÞ<
DðP�2Þ. The second region (II) corresponds to two-copy
bound nonlocal boxes, for which CðPÞ ¼ DðP�2Þ<
CðP�2Þ. The third region (III) corresponds to boxes such
that CðP�2Þ ¼ CðPÞ; we term these ‘‘HH boxes.’’

Indeed it would be interesting to investigate the case of
more copies. Unfortunately, very little is known beyond the
caseN ¼ 2. Still, a notable result is that of Ref. [15], where
the scaling of the nonlocal part of N copies of isotropic
boxes as N increases was investigated. Interestingly, they
found that C½PISOð�Þ�N�>C½PISOð�Þ� for N � 3 (see
also [22]). At first sight this result seemed to suggest that
isotropic boxes could be distilled by a protocol involving

three copies or more. However, our present findings
diminishes this hope. Another consequence of the result
of Ref. [15] is that HH boxes exist only in the case N ¼ 2.
Thus this behavior is a finite size effect.
Finally, it is worth discussing the asymptotic case. A

question of particular interest is whether bound nonlocality
can survive in the limitN ! 1. Remarkably, the answer to
this question is yes. An example is the isotropic box reach-

ing the Tsirelson bound of quantum nonlocality (CHSH ¼
2

ffiffiffi
2

p
), i.e., the box PISOð�Þ with � ¼ ffiffiffi

2
p � 1. Clearly, this

box cannot be distilled, even with infinitely many copies,
since the set of quantum correlations is closed under wir-
ings [20]. Nevertheless, the result of Ref. [15] shows that
forN � 3 the nonlocal cost ofN copies exceeds the cost of
a single copy. Therefore, this box is bound nonlocal for all
N � 3, including the asymptotic limit.
Activation of nonlocal distillability.—Above, we have

shown the existence of restricted forms of nonlocality, such
as bound nonlocality. A natural question which arises now
is whether the nonlocality contained in such boxes can be
activated.
Below, we show that nonlocal distillability can be

activated. First, we show that for any box P1, there
exists another box P2 such that DðP1 � P2Þ>maxðCðP1Þ;
CðP2ÞÞ. In other words, by combining one copy of P1 and
P2, it becomes possible to achieve a task which would be
impossible with one copy of either P1 or P2. Second, we
present a stronger form of activation: For any two-copy
undistillable box P1 and integer N � 1, there exists a box
P2 such that DðP1 � P2Þ>maxðDðP�2

1 Þ; DðP�N
2 ÞÞ, thus

showing activation of undistillable nonlocality.
Let us consider the following example. We take P1 ¼

PISOð�Þ and P2 ¼ PNLCð�0Þ. Next we apply the BS proto-
col to P1 � P2 and obtain the box P0 ¼ WBSðP1 � P2Þ,
which has nonlocal cost CðP0Þ ¼ �þ �0ð1� �Þ=8.
For all 0< �0 � � < 1, we have that CðP0Þ> � ¼
maxðCðP1Þ; CðP2ÞÞ. Thus we get activation of nonlocality.

FIG. 1 (color online). Section of the no-signaling polytope
given by nonlocal boxes Pð�; �Þ. The region features three
qualitatively different types of boxes: (I) two-copy distillable
boxes, (II) two-copy bound nonlocal boxes, and (III) HH boxes.
Inset: Contour plot of the nonlocal cost of two copies, showing
lines of constant C½P�2ð�; �Þ�.
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This result holds for any box P1 with binary inputs and
outputs, since any such box can be ‘‘twirled’’ via LO to an
isotropic box featuring the same nonlocal cost [23].

Next, we note that D½P�N
NLCð�0Þ� � C½P�N

NLCð�0Þ� �
1� ð1� �0ÞN . Thus, in the case 0<1�ð1��0ÞN �
�<1, we obtain that CðP0Þ>maxðDðP�2

1 Þ; DðP�N
2 ÞÞ. In

other words, by combining one copy of P1 and P2, we
obtain a box P0, with CðP0Þ> �, which would be impos-
sible from two copies of P1 or from N copies of P2.

Moreover, when P1 reaches Tsirelson’s bound, i.e., � ¼ffiffiffi
2

p � 1, it is actually bound nonlocal in the asymptotic
limit. Remarkably, one copy of the box P2 can activate the
bound nonlocality of the box P1 regardless of the amount
of nonlocality of P2. We note the similarity between this
example and the original example of activation of bound
entanglement [24]. There it was shown that by taking one
copy of an entangled state � which cannot be distilled
without collective operations, and sufficiently many copies
of a bound entangled state �BE, activation occurs. That is,
the fidelity of � with a maximally entangled state can be
made arbitrarily close to 1. This is indeed impossible for
one copy of � or for arbitrarily many copies �BE.

Discussion and open questions.—We investigated non-
locality distillation by using measures of nonlocality based
on the EPR2 decomposition and showed the existence of
bound nonlocality. In addition, we presented examples of
activation of nonlocal distillability. These examples show
that any nonlocal box is useful for nonlocality distillation,
in the sense it can be used to boost the distillation process
of other boxes.

Let us comment on some open questions. A first issue
concerns the computation of the measure. While the non-
local cost can be computed efficiently, via a linear pro-
gram, we had to run an exhaustive search over distillation
protocols in order to determine the distillable nonlocality.
It would be interesting to find out whether distillable non-
locality can be computed more efficiently, or at least
whether meaningful bounds can be derived in a simpler
way. One possibility would be to get a better understanding
of the structure of sets of correlations which are closed
under wirings [20]. For instance, given an initial set of
boxes S, how could one characterize the set of boxes which
can be generated by wiring arbitrarily many copies of
boxes in S? In other words, how could one find the smallest
closed set containing S?

A further interesting problem concerns the asymptotic
behavior of our measures. We have shown the existence of
bound nonlocality for any number of copies N � 2, in-
cluding the limit N ! 1. There is, however, much work to
be done in order to understand the asymptotic regime. In
particular, while we focused here on finite copy distillation,
it would be interesting to investigate asymptotic
distillation.

Finally, it would be interesting to see how our measure
of nonlocality relates to others. In particular, it was
recently shown that the PR box can be considered as a

unit of bipartite nonlocality [25], in the sense that all
bipartite nonlocal boxes can be simulated arbitrarily well
by using only PR boxes; note, however, that it is not known
whether asymptotically PR boxes can be reversibly trans-
formed into any nonlocal resource. Still, this suggests
another natural measure of nonlocality, namely, the mini-
mal number of PR boxes required to simulate any box. It is
noteworthy that computing this measure requires detailed
knowledge of the nonlocal part, which is arguably undesir-
able. Nevertheless, it would be interesting to understand
the properties of this measure and how they relate to the
measures presented here.
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