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We demonstrate a method for the fast, high-throughput characterization of the dynamics of active

particles. Specifically, we measure the swimming speed distribution and motile cell fraction in

Escherichia coli suspensions. By averaging over �104 cells, our method is highly accurate compared

to conventional tracking, yielding a routine tool for motility characterization. We find that the diffusivity

of nonmotile cells is enhanced in proportion to the concentration of motile cells.
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Diverse processes in multicellular organisms such as
chemotaxis involve motility [1], which is also ubiquitous
in unicellular organisms such as bacteria, enabling,
e.g., the pathogen Helicobacter pylori to invade the stom-
ach epithelium [2]. Globally, bacterial motility may be
coupled to aquatic nutrient recycling [3]. The bacterium
Escherichia coli is a paradigm for understanding cell
motility [4]. A cell executes a random walk by alternating
between swimming (or ‘‘running’’) at average speed
�v * 10 �m=s for �1 s and tumbling for �0:1 s.
Early bacterial motility work relied on tracking one

to a few cells [5,6]. Today, �102–103 cells can be tracked
simultaneously [7–9]. Tracking yields a host of parameters,
including �v (e.g., [6]) and the fraction of motile organisms,
� (e.g., [3]). But tracking is laborious, and the need for
averaging over many data sets to achieve high accuracy
restricts the scope for time-dependent measurements.

We demonstrate a fast, high-throughput method for
characterizing E. coli motility. It should be applicable to
other bacteria and micro-organisms, and to a new genera-
tion of synthetic, self-propelled ‘‘active particles’’ [10].

Dynamic light scattering (DLS), long used for measur-
ing diffusivity in colloids, is in principle suitable for the
fast characterization of motile bacteria [11]. DLS yields
the normalized intermediate scattering function (ISF),
fðq; �Þ (where q is the scattering vector and � is time)
[12], which probes density relaxation processes at length
scale 2�=q. But the lowest scattering angle in conventional
DLS, �20� (or q� 4:5 �m�1), probes dynamics at
2�=q & 1:4 �m, where cell body precession [13] and
other motions in E. coli contribute strongly to the decay
of the ISF. Thus, contrary to initial claims [11], E. coli
swimming, which occurs on the scale of �v=�run � 10 �m,
cannot be characterized unambiguously using DLS
unless we can access q & 0:6 �m�1 (or & 3�) [13].

Instead of implementing such ultra-low-angle DLS, we
use the powerful technique of differential dynamic micros-
copy (DDM) to measure fðq; �Þ for bacterial swimming.
A form of DDMwas first used to study density fluctuations

in binary mixtures [14]. It has recently been used to mea-
sure colloidal diffusivity [15], requiring only nonspecial-
ized equipment (microscope, camera and computer). The
DDM of colloids, however, does not utilize its unique
capability to reach very low q (& 1 �m�1), which turns
out to be essential for probing bacterial swimming.
The theory of DDM is detailed in [16]. We give an

alternative derivation, which also explains experimental
procedures. The raw data are time-lapsed images of (say)
bacteria, described by the intensity Ið ~r; tÞ in the image
plane (~r). From these we calculate difference images at
various delay times, �, Dð~r; �Þ ¼ Ið~r; tþ �Þ � Ið~r; tÞ ¼
�Ið~r; �Þ � �Ið~r; 0Þ, where �Ið ~r; tÞ ¼ Ið~r; tÞ � hIi denotes
intensity fluctuations. Fourier transforming Dð ~r; �Þ gives

FDð ~q; �Þ ¼
Z

Dð ~r; �Þei ~q� ~rd~r: (1)

For stationary, isotropic processes, we average over the
start time t in the difference images and azimuthally in ~q
space to calculate the basic output of DDM, what we may
call the ‘‘differential intensity correlation function’’
(DICF), hjFDðq; �Þj2i (where q ¼ j ~qj).
We now show that the DICF is related simply to the ISF

if we assume that intensity fluctuations in the image are
proportional to the fluctuations in the number density of
bacteria around the average density h�i:

�Ið~r; tÞ ¼ ���ð~r; tÞ: (2)

Here the constant � depends on the contrast mechanism
and ��ð~r; tÞ ¼ �ð~r; tÞ � h�i. Now Eqs. (1) and (2) give

FDð ~q; �Þ ¼ �½��ð ~q; �Þ ���ð ~q; 0Þ�; (3)

where ��ð ~q; �Þ ¼
Z

��ð ~r; tÞei ~q� ~rd~r: (4)

Thus, the DICF can be expressed as

hjFDðq; �Þj2i ¼ AðqÞ
�
1� h��ðq; 0Þ���ðq; �Þi

h½��ðqÞ�2i
�
; (5)
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where AðqÞ ¼ 2�2h½��ðqÞ�2i. The prefactor AðqÞ depends
on the imaging system, �, and on the sample’s structure,
h½��ðqÞ�2i. Recognizing that the �-dependent term on the
right-hand side of Eq. (5) is the ISF, we arrive at this key
result:

hjFDðq; �Þj2i ¼ AðqÞ½1� fðq; �Þ� þ BðqÞ; (6)

where we have included a term BðqÞ to account for camera
noise. Thus, the power spectrum of intensity fluctuations
of the images, hjFDðq; �Þj2i, yields the ISF. In practice,
we reconstruct fðq; �Þ by using a parametrized model of
the ISF to fit the measured DICF with Eq. (6).

For independent particles, fðq; �Þ ¼ he�i ~q��~rð�Þi, where
� ~rð�Þ is the single-particle displacement [12]. This reduces

to fðq; �Þ ¼ e�Dq2� for identical diffusing spheres with
diffusivity D [12]. For a swimmer with velocity ~v,
� ~rð�Þ ¼ ~v�. For an isotropic population of such swimmers
in 3D, fðq; �Þ ¼ sinðqv�Þ=qv� � sincðqv�Þ [12]; since a
swimmer inevitably also undergoes Brownian motion, this

needs to be multiplied by an exponential prefactor e�Dq2�.
If only a fraction � of swimmers are motile with speed
distribution PðvÞ, then the full ISF reads [17]:

fðq; �Þ ¼ e�Dq2�

�
ð1� �Þ þ �

Z 1

0
PðvÞsincðqv�Þdv

�
:

(7)

In order to use this model to interpret our DDM data from
E. coli, we need to specify a form for PðvÞ. Limited
previous data [11,17] suggest a peaked function with
Pðv ! 0Þ ! 0. We use a Schulz distribution

PðvÞ ¼ vZ

Z!

�
Zþ 1

�v

�
Zþ1

exp

�
�v

�v
ðZþ 1Þ

�
; (8)

where Z is related to the variance �2 of the distribution by

� ¼ �vðZþ 1Þ�1=2. The integral in Eq. (7) evaluates to [18]

Z 1

0
PðvÞsincðqv�Þdv ¼

�
Zþ 1

Zq �v�

�
sinðZtan�1�Þ
ð1þ �2ÞZ=2 ; (9)

where � ¼ ðq �v�Þ=ðZþ 1Þ.
We studied E. coli AB1157 grown at 30 �C in L broth,

reinoculated into T broth and harvested in midexponential
phase, washed 3 times by filtration (0:45 �m filter) in
motility buffer and resuspended in the same buffer to an
optical density of 0.3 (at 600 nm), giving a final cell
volume fraction of 	 � 0:06%. (See supplementary mate-
rial for details [19].) Care was taken throughout to mini-
mize damage to flagella. A �400 �m deep flat glass cell
was filled with �150 �l of cell suspension, sealed, and
observed at 22	 1 �C. Swimming behavior was constant
over a 15 min period. We also used a nonmotile mutant
with ‘‘paralyzed’’ flagella (motA).

We collected movies of cells using a 10
 phase-contrast
objective in a Nikon Eclipse Ti inverted microscope.
Images were obtained � 100 �m from the bottom
of a 400 �m-thick sample cell. A high-speed camera

(Mikrotron MC 1362) was connected to a PC with a frame
grabber card with 1 GB onboard memory. Movies were
acquired typically at 100 Hz. The frame size L2 was 500

500 and 1024
 1024 pixels for motA mutants and wild-
type cells, respectively, imaging �104 cells in a 0:7 mm2

or 1:4 mm2 field of view over 38 or 8 s. The pixel size
(or spatial sampling frequency) is k ¼ 0:712 �m�1, so
that qmin ¼ 2�k=L � 0:01 �m�1 or 0:004 �m�1.
To calculate the DICFs from the raw images, we used

a LabView (National Instruments) code optimized for an
8-core PC (dual Intel Xeon quad-core processors, 2 GHz/
core, 4 GB RAM). Analyzing �40 s of movies takes
�10 min . We then fitted each DICF to Eq. (7) using
Eqs. (7)–(9). At each q, nonlinear least-squares fitting
using the Levenberg-Marquardt algorithm [20] in IGOR
Pro (WaveMetrics) returns six parameters: �v, �, D, �, A
and B. Fitting the whole q range takes �30 s. From the
fitted AðqÞ and BðqÞ, we obtain the reconstructed ISF using
the measured DICF and Eq. (6). We also obtain the calcu-
lated ISF by using the fitted f �v;�;D; �g in Eqs. (7)–(9).
We first studied nonmotile (motA) cells. Measured

DICFs are well fitted using Eq. (6) with fðq; �Þ ¼ e�Dq2�

[i.e., Eq. (7) with � ¼ 0] (Fig. 1, [19]). The fitted
diffusivity, DðqÞ, was q independent within experimental
uncertainties in the range 0:5 �m�1 & q & 2:2 �m�1,
Fig. 1 inset, and averaged to D ¼ 0:30	 0:01 �m2=s.
Conventional DLS (data not shown) gave an exponential
fðq; �Þ andD ¼ 0:32	 0:02 �m2=s, agreeing with DDM.
The reconstructed ISFs collapse onto each other in the
range 0:5 �m�1 & q & 2:2 �m�1 when plotted against
q2� (black curves, Fig. 1); i.e., the nonmotile cells are
purely diffusive. At q & 0:5 �m�1, fðq; �Þ has not
decayed to zero at the longest time probed in our experi-
ments, so that fitting becomes less reliable because of
the difficulty in estimating AðqÞ [cf. Eq. (6)]. The
reconstructed ISFs therefore do not collapse under q2�
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FIG. 1. Reconstructed ISFs of nonmotile bacteria plotted
against q2�. Solid (black) curves for over 200 values of q in
the range 0:5 �m�1 & q & 2:2 �m�1 collapse, but curves from
lower q (grey) do not collapse. Inset: fitted diffusivity DðqÞ
(black and grey with the same meaning).
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scaling and DðqÞ is noisy (grey curves, Fig. 1; crosses,
Fig. 1 inset).

We next studied motile cells. The measured DICFs
(Fig. 2, [19]) were again fitted to Eq. (6), now using the
full fðq; �Þ in Eq. (7) and a Schulz PðvÞ, Eqs. (8) and (9). A
selection of the reconstructed ISFs is shown in Fig. 2
(points), where we also superimpose the calculated ISFs
(curves). The ISFs display a characteristic shape, espe-
cially at low q: a fast decay dominated by swimming
followed by a slower decay dominated by diffusion.

All fit parameters characterizing swimming are shown in
Fig. 3 [21]. The noise increases at low q, primarily because
the long-time, diffusive part of fðq; �Þ has not reached zero
in our time window at these q, Fig. 2, rendering it harder
to determine the diffusivity accurately: the low-q noise is
particularly evident in the fitted DðqÞ, Fig. 3. But to within
experimental uncertainties all parameters in Fig. 3 are
essentially q independent at least for q * 1 �m�1 [22],
suggesting that our model is able to capture essential
aspects of the dynamics of a mixed population of non-
motile and motile E. coli. Averaging yields �v ¼ 13:7	
0:1 �ms�1 and �� ¼ 7:0	 0:1 �ms�1, with error bars
reflecting estimated residual q dependencies. Changing
AðqÞ and BðqÞ by using a 20
 objective (which is sub-
optimal for our experiment) produced the same fitted
motility parameters in the relevant q range.

Our derivation of Eq. (6) assumes that the decorrelation
of fðq; �Þ caused by the change in intensity of a swimmer’s
image due to its motion along the optic (z) axis can be
neglected. While wild-type E. coli AB1157 tumbles be-
tween ‘‘runs’’ and the swim path between tumbles is
slightly curved, Eq. (7) neglects these effects. We tested
these assumptions by analyzing simulated images.

We carried out Brownian dynamics simulations of non-
interacting point particles at a number density and in a
geometry directly comparable to our experiments. A frac-
tion � of the particles had a drift speed drawn from a
Schulz distribution. From these simulations, we con-
structed a sequence of 2D pixellated ‘‘images’’ with the
same field of view as in experiments. All particles in a slice

of thickness d centered at z ¼ 0 contribute to the image.
A particle at (x, y, z) is ‘‘smeared’’ into an ‘‘image’’
covering the pixel containing (x, y) and its 8 neighboring
pixels. The contrast of the image, c, depends on z. We
experimentally determined d and cðzÞ. The measured cðzÞ
could be fitted by a symmetric quadratic that dropped to
background noise outside a � 40 �m slice.
As input, we used �v ¼ 13:7 �ms�1, � ¼ 7:0 �ms�1,

� ¼ 0:577 and D ¼ 0:543 �m2=s (cf. Fig. 3). Fitting
DICFs calculated from simulated ‘‘images’’ (Fig. 3a,
[19]) gave q-independent outputs (Fig. 3b, [19]): �v ¼
13:8	 0:1, �� ¼ 7:2	 0:2, �� ¼ 0:58	 0:01 and �D ¼
0:55	 0:02 (where the uncertainties are standard devia-
tions), agreeing with inputs. Thus, at d ¼ 40 �m depth
of field, the intensity decorrelation due to z motion has
negligible effect, presumably because it is much slower
than the decorrelation due to swimming and diffusion.
However, if we scale cðzÞ to smaller depths of field, the
fitting beings to fail at d � 10 �m (data not shown): at this
small focus depth, a small z movement produces a large
intensity variation, invalidating our analysis.
DDM determines the (inverse) time it takes a cell

to traverse �2�=q; i.e., it measures ‘‘linear speeds.’’
Tumbling or curvature lowers the measured speed, espe-
cially at lower q. Our experimental vðqÞ, Fig. 3, indeed
shows a slight decrease towards low q. As expected, how-
ever, the vðqÞ recovered from analyzing simulated straight
swimmers (Fig. 3, [19]) show no such dependence. More
detailed analysis of the measured vðqÞ may therefore yield
further information about tumbling and curvature.
We next mixed suspensions of bacteria with known �

with nonmotile cells to create samples with 0 � � � 0:8.
DDM shows that D increases with �, Fig. 4. Since the
fitting of D from Eq. (7) is largely determined by non-
swimmer diffusion; Fig. 4 shows that swimmers enhance
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the diffusion of nonswimmers. This enhancement is not a
fitting artifact: it is not observed in simulations, which
returned an � independent D, Fig. 4. Since the simulated
particles are noninteracting, our experimental observation
must be due to direct or hydrodynamic interaction between
swimmers and nonswimmers.

The enhanced diffusion of (passive) particles in suspen-
sions of motile E. coli has been observed before using
direct tracking at both low concentration (	 ¼ 0:003%)
in 3D [23] and high concentration (	 � 10%) in 2D [24].
Scaling arguments suggest that in the limit of independent
swimmers, the enhancement should scale linearly as the
concentration of swimmers 	� [25]. In our experiments,
the volume fraction of nonswimmers varies, but remains
& 0:1%; i.e., they can be considered as independent
‘‘tracer’’ particles. Thus, Fig. 4 can be reinterpreted as a
plot of the effective diffusion coefficient of tracer particles
as the concentration of swimmers increases from 	� ¼ 0
to 	� ¼ 0:06%
 0:8 ¼ 0:048%. The enhancement ap-
pears to scale linearly with the swimmer concentration [25].

Our Dð�Þ results may also be compared to enhanced
tracer diffusion by Chlamydomonas reinhardtii, a nearly
spherical single-cell algae [26] larger (radius�5 �m) and
faster ( �v� 100 �ms�1) than E. coli. More fundamentally,
C. reinhardtii (a ‘‘puller’’) and E. coli (a ‘‘pusher’’) gen-
erate qualitatively different flow fields, which may impact
on tracer diffusion [25]. Nevertheless, it is intriguing that
2% of C. reinhardtii quadruples the diffusivity of 2 �m
tracers, while 0.048% of motile E. coli already doubles the
diffusivity of nonmotile cells.

To summarize, we have shown that DDM is a fast, high-
throughput method for characterizing the bulk motility of
wild-type E. coli. The method could, in principle, be ex-
tended to characterize the run-tumble-run random walk
of individual cells [27] (by going to even lower q), or to
the study of motility near surfaces [which requires the use
of a different fðq; �Þ in Eq. (7)]. The method may also be
applicable to the study of other motile organisms, includ-
ing spermatozoa, as well as for characterizing the motions
of synthetic motile colloids [10]. But the q range, camera
speed and data acquisition time need to be optimized for

each system. Our finding that even low concentrations
of motile cells enhance the diffusivity of nonmotile cells
may have implications for understanding the coupling
between bacterial motility and the recycling of organic
debris in natural aqueous habitats [3].
Finally, we should emphasize that DDM yields fðq; �Þ

of suspensions of active swimmers irrespective of 	, pro-
vided that Eq. (2) remains valid. It is therefore a general
method for studying the dynamics of these suspensions,
including interaction effects at higher 	, although new
models will clearly be needed for interpreting the data.
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