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Guided by experiment and band structure, we introduce and study a phenomenological Landau theory

for the unusual charge and spin ordering associated with the Mott transition in the perovskite nickelates,

with chemical formula RNiO3, where R ¼ Pr, Nd,Sm, Eu, Ho, Y, and Lu. While the Landau theory has

general applicability, we show that for the most conducting materials, R ¼ Pr, Nd, both types of order can

be understood in terms of a nearly nested spin-density wave. Furthermore, we argue that in this regime, the

charge ordering is reliant upon the orthorhombic symmetry of the sample, and therefore proportional to

the magnitude of the orthorhombic distortion. The first order nature of the phase transitions is also

explained. We briefly show by example how the theory is readily adapted to modified geometries such as

nickelate films.
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The nature of the Mott metal-insulator transition (MIT),
driven byCoulomb repulsion between electrons, is a central
subject in condensed matter physics. A canonical MIT
occurs in the nickelates, perovskites with the composition
RNiO3, where R is a rare-earth metal with nominal valence
R3þ. Metallicity in the nickelates correlates with ionic
radius, varying from largest, R ¼ La, which is metallic at
all temperatures, to smallest,R ¼ Lu, which is insulating at
all temperatures; R ¼ Eu has the highest MIT temperature,
TMIT ¼ 480 K [1]. The nickelates are particularly interest-
ing because they display complex ordering phenomena in
the insulating state. The insulating ground states are mag-
netic, with a large unit cell corresponding to a periodicity of
4 lattice spacings relative to the ideal cubic structure, and is
usually interpreted in terms of an ‘‘up-up-down-down’’ spin
configuration. Remarkably, this complex ordering seems to
be consistent across the entire family [2–5]. Thismagnetism
coexists with a form of ‘‘charge ordering’’ (CO), which
modulates the Ni charge fromNi3þ� toNi3�� on alternating
sites of a rock-salt type substructure of the cubic perovskite.
In the more insulating nickelates, R ¼ Eu, Ho, this charge
ordering occurs not only in the ground state but also in an
intermediate temperature insulating phase without magne-
tism between the high-temperature metallic phase and the
low temperature magnetic one.

It has been postulated that the charge ordering is funda-
mental, and should be thought of as separation into spinless
Ni4þ and spin s ¼ 1 Ni2þ ions, due to dominant local
Hund’s rule coupling JH [6]. However, no explanation
has been given for the particular complex yet robust mag-
netic structure in this picture. Moreover, in the materials
PrNiO3 and NdNiO3, for which the MIT occurs at relative
low temperature, the ionic description does not seem so
natural. In addition, in these materials, charge and spin
order occur simultaneously, bringing the primacy of the
former into question.

In this Letter, we introduce a phenomenological Landau
theory, motivated by the particular structure of the eg bands

of the nickelates near the Fermi energy. It is particularly
relevant to the more itinerant materials such as PrNiO3 and
NdNiO3, where charge and spin ordering are coincident
[7], and the Landau theory has a natural microscopic origin
in a spin-density-wave (SDW) picture. The SDW picture
and Landau theory yield a number of direct insights into
the ordering in bulk samples. First, the observed unusual
magnetic periodicity is simply explained due to approxi-
mate Fermi surface nesting of the eg bands. Second, we

argue that the observed charge ordering is naturally in-
duced in this picture as a secondary order parameter. Third,
the magnitude of the induced charge order is proportional
to the degree of orthorhombicity in the material, a corre-
lation which is indeed observed in experiments, though the
causative relationship does not appear to have been iden-
tified previously.
The Landau theory can also be easily adapted to other

situations. As one such application, we derive the a general
phase diagram describing the passage from ‘‘weak’’
(SDW-like) Mott insulators to ‘‘strong’’ Mott insulators,
in which charge ordering is indeed dominant, which is in
agreement with that observed in the bulk nickelates, and
we explain the first order nature of the transitions observed
there. We also show how to incorporate the effects of strain
and interfaces in films and multilayers, and predict that
changes of the magnetic ordering wave vector and exotic
‘‘multiple-q’’ states may be thus induced.
Microscopic considerations.—It is helpful to consider as

a semimicroscopic model framework a tight-binding de-
scription of the eg bands,

Htb ¼ �X
ij

tabij c
y
ia�cjb�; (1)
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where i, j are site indices, a, b ¼ 1, 2 are orbital indices
denoting the two eg states with the symmetry of 2z2 �
x2 � y2 and x2 � y2 orbitals (these should properly be
considered hybridized combinations—Wannier func-
tions—of Ni d states and the neighboring O p states, as
RNiO3 is a charge transfer insulator), and � ¼"; # is the
spin index. Sums over orbital and spin indices are implied.
The dominant hopping processes are expected to be those
with �-type bonding, which can occur with amplitude t
and t0 when i, j are first and second neighbor sites, respec-
tively, of the ideal cubic Ni sublattice. Specifically, then
tabi;i��̂ ¼ t�a

��
b
� and tabi;i��̂��̂ ¼ t0ð�a

��
b
� þ�b

��
a
�Þ, where

�x ¼ ð� 1
2 ;

ffiffi
3

p
2 Þ, �y ¼ ð� 1

2 ;�
ffiffi
3

p
2 Þ, �z ¼ ð1; 0Þ are the or-

bital wave functions for the 2x2 � y2 � z2, 2y2 � x2 � z2,
and 2z2 � x2 � y2 �-bonding orbitals along the three axes,
in the chosen basis, respectively.

The above tight-binding model agrees with the eg bands

obtained from LDA calculations [8], and the Fermi surface
measured recently in photoemission on a LaNiO3 film [9].
It also explains well resistivity, Hall effect, and thermo-
power measurements on LaNiO3 films [10], and approxi-
mately describes the interband optical spectral weight at
energies below about 1 eV [11]. LDA favors t0=t � 0:05,
while comparison to photoemission is best for t0=t � 0:15,
and the range 0:05 � t0=t � 0:2 is consistent with trans-
port. It is instructive to view the Fermi surface for this
range of values (see Fig. 1). One observes in the middle of
this range that the Fermi surface is rather flat and approxi-
mately composed of ‘‘cubes’’ rather than spheres. Fermi
surfaces with large flat sections are considered approxi-
mately ‘‘nested’’, and well-known to lead to enhance sus-
ceptibilities at certain wave vectors. Calculation of the free
electron spin susceptibility (see Fig. 2) indeed shows an
enhancement, peaked about wavevectors hkkki, with k
close to 1

4 ð�2�Þ (for t0=t ¼ 0:15 we find e.g. k � 0:4�).

With interactions—Coulomb U and Hund’s exchange
JH—included, the random phase approximation, or
Hartree-Fock theory, both thereby show a tendency to
spin-density-wave (SDW) order at wave vectors close to
this one. It is remarkable that band theory considerations
give a simple mechanism for SDW order at k ¼ �=2,
which corresponds precisely to that observed in all the

insulating nickelates. Interestingly, we have also found a
mechanism for this order in the strong-coupling limit of the
appropriate multiorbital Hubbard model, which is too in-
volved to report here [12]. Together, this may explain the
robustness of the magnetic state observed in experiment.
This unusual magnetic order has not, to our knowledge,
been explained before by any theory.
Landau theory.—Rather than proceeding with a micro-

scopic theory (Hartree-Fock and other calculations will be
reported in a future publication [12]), we instead pursue the
implications of this view using symmetry-based Landau
analysis. We begin by considering the problem for an ideal
cubic solid, and take into account distortions of the perov-
skite structure at a later stage. For the SDW order, states
with wave vectors along any of the h111i axes are equiva-
lent. Hence we actually need to include four order parame-
ters, c a with wavevectors Qa, given by Q0 ¼ �

2 ð1; 1; 1Þ,
Q1 ¼ �

2 ð1;�1;�1Þ,Q2 ¼ �
2 ð�1; 1;�1Þ, and Q3 ¼ �

2 �
ð�1;�1; 1Þ. Physically, the meaning of the order parame-
ters, which are complex vectors, is that

hSii ¼
X
a

Re½c ae
iQa�ri�: (2)

It is a straightforward but lengthy exercise to identify all
the allowed terms, up to fourth order in the SDW order
parameters, in the Landau expansion, taking into account
the translational and point group symmetries of the ideal
cubic structure. (see supplementary material [13]) At qua-
dratic order, one obtains only the single coefficient

F2 ¼ r
X
a

c �
a � c a 	 r

X
a

jc aj2: (3)

At quartic order, one finds 13 distinct terms. We divide
them into the three terms involving products of only one
‘‘flavor’’,

Fð1Þ
4 ¼ u1

X
a

ðc �
a � c aÞ2 þ u2

X
a

jc a � c aj2

þ u3ð
X
a

ðc a � c aÞ2 þ H:c:Þ; (4)

and ten additional terms involving products of two and four
distinct fields. For brevity, we will not give these explicitly
here, as they will not play a major role in what follows.

FIG. 1. Fermi surfaces for the tight-binding model. In (a) and
(b), we show the conduction and valence band Fermi surfaces,
respectively, for t0=t ¼ 0:05. For larger t0=t, the conduction band
Fermi surfaces become large and holelike, as shown in (c) and
(d) for t0=t ¼ 0:15. The approximate nesting in the latter case is
indicated schematically in (d).
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FIG. 2. Zero frequency spin susceptibility for the tight-binding
Hamiltonian for t0=t ¼ 0:05, 0.1, 0.15, as a function of momen-
tum k in the cubic Brillouin zone. Note that for the best nested
situation, t0=t ¼ 0:15, the susceptibility is sharply peaked close
to the wave vector 2�ð14 ; 14 ; 14Þ.
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Single-q states.—The full free energy simplifies greatly
if we restrict to ‘‘single-q’’ states, consistent with experi-
ment. Here only one of the four order parameters is non-
zero, and the ten quartic Landau invariants not shown in
Eq. (4) vanish. In a single-q state, we denote below the
nonzero order parameter by simply c , without a subscript.

Several types of single-q states are possible, dependent

upon values of u2 and u3 in Fð1Þ
4 in Eq. (4). The second

coefficient, u2, distinguishes between collinear and spiral
states. For u2 > 2ju3j, minimum energy states have c ¼
c ðn̂1 þ in̂2Þ, where n̂1 and n̂2 are orthogonal unit vectors.
These describe coplanar spirals, with spins of fixed length in
the plane spanned by n̂1 and n̂2. The phase of c is arbitrary,
corresponding to rotations of the spins within this plane.

For u2 < 2ju3j, the free energy is minimized by c ¼
c n̂, where c is a complex scalar. Such configurations
describe, via Eq. (2), collinear SDW states. In this case,
the remaining coefficient, u3, selects preferential phases of
c . Writing c ¼ jc jei�, we finally have

Fð1Þ
4 ¼ ðu1 þ u2Þjc j4 þ 2u3jc j4 cos4�: (5)

When u3 < 0, states with � ¼ �
2 n are favored, while for

u3 > 0, states with � ¼ �
2 ðnþ 1

2Þ are favored (in both cases
n ¼ 0, 1, 2, 3 describe four spatially translated states).
Going back to Eq. (2), and using the wave vector Q0 ¼
�
2 ð1; 1; 1Þ and taking n̂ ¼ ẑ for concreteness, we find that

these describe spin states with

hSzi i¼
� jc j�ðþ1;0;�1;0; . . .Þ for u3<0
þ 1ffiffi

2
p jc j� ðþ1;�1;�1;þ1; . . .Þ for u3>0 ; (6)

where the successive terms in parenthesis describe succes-
sive spin expectation values when moving in unit steps
along the principle cubic x, y, or z axes in real space.

Charge order.—For the three types of magnetic states
found above (one spiral, two collinear), let us consider the
associated charge order. We consider charge ordering at the
wave vector (�, �, �), corresponding to the ‘‘rock-salt’’
ordering observed in experiment. The order parameter� is
introduced via

hnii ¼ �nþ ð�1Þxiþyiþzi�; (7)

where ni ¼ P
a�c

y
ia�cia� is the electron number operator.

� may equally well be regarded as representing the am-
plitude of optical phonons representing octahedral breath-
ing modes at the same wave vector. Symmetry allows the
following terms in the free energy involving �

F� ¼ ~r�2 þ ~u�4 � ��
X
a

Re½c a � c a�; (8)

where we have included the leading linear coupling to the
SDW order parameters. The crucial thing to note here is
that whenever c � c is real and nonzero, a nonzero � is
necessarily induced in the minimum free energy state. In
such situations,� is a secondary order parameter, slaved to
the primary SDW one. Mathematically, if ~u can be

neglected, � can be readily ‘‘integrated out’’ (F� can be
minimized with respect to �) to simply renormalize the
quartic SDW couplings.
In this case, we can analyze charge order simply in terms

of the SDW states. In two of the three SDW states dis-
cussed above, the spiral and the collinear state with � ¼
�=4, Re½c � c � ¼ 0, the charge order vanishes. This is
easily understood since in these cases all sites have equiva-
lent spin states, up to rotations. In the remaining collinear
state, with � ¼ 0, Re½c � c � ¼ jc j2 and � � 0. Again
this is intuitively clear since the sites with zero spin are
obviously distinct from those with nonzero spin. Two
problems arise now in comparison with experiment. First,
we must arbitrarily choose parameters to be in the third
magnetic state in order to obtain the observed charge order.
Second, in experiment, nonzero magnetic moments, of
unequal magnitude, are clearly observed on the two types
of ‘‘inequivalent’’ sites, while in this theoretical configu-
ration the magnetic moment vanishes on half the sites.
Orthorhombicity.—These problems are resolved by tak-

ing into account the distortions of the ideal perovskite
structure. We focus on the orthorhombic (Pbnm) structure,
which obtains for all the nickelates exceptLaNiO3, which is
rhombohedral, and does not undergo a Mott transition. The
orthorhombic distortion is present in the metallic state up to
high temperatures (e.g., up to T ¼ 780 K in PrNiO3 [14]),
and is understood to arise from reduction in the tolerance
factor due to the changing rare earth ionic radius. The Pbnm
space group has only discrete reflection and inversion op-
erations in its point group (see supplementary material
[13]). The structure has a quadrupled unit cell, which is

doubled by a 45
 rotated, approximately
ffiffiffi
2

p � ffiffiffi
2

p
enlarged

supercell in the a-b plane, and a doubling along the c axis.
One can rewrite the conventional cubic coordinates x, y, z in
terms of standard orthorhombic coordinates x, y, z, accord-
ing to x ¼ xþ y� 1

2 , y ¼ �xþ yþ 1
2 , z ¼ 2z. Making

this transformation, one finds that the 4 cubic SDW states
corresponds to two orthorhombic SDW wave vectors:
Qortho

0 ¼ Qortho
3 ¼ 2�ð0; 12 ; 12Þ and Qortho

1 ¼ Qortho
2 ¼

2�ð12 ; 0; 12Þ. The latter is the wave vector found in experi-

ments on nickelateswithR ¼ Sm, Eu,Nd, Pr, andHo [2–5].
The Pbnm space group has considerably lower symme-

try than cubic, containing only inversion, reflection, and
180
 screw axes apart from translations. As a consequence,
the orthorhombic distortion allows additional terms in the
Landau free energy. A straightforward analysis shows that
two such terms arise at quadratic order:

Fortho
2 ¼ r1ðjc 0j2 � jc 1j2 � jc 2j2 þ jc 3j2Þ

þ r2ðc 1 � c 1 � c 2 � c 2 þ c:c:Þ: (9)

We neglect orthorhombic corrections to the quartic terms
on the grounds that they are presumably smaller.
The terms in Eq. (9) clearly lead to an energy difference

between the two possible orthorhombic wave vectors. We
focus on the case r1 >�jr2j, for which ordering in c 1, c 2
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is preferred, which corresponds to the experimental wave
vector. To proceed, we suppose, without loss of generality,
that c 1 ¼ c is the nonzero order parameter. For the spiral
state, we now consider the cubic energy from Eq. (4), with
u2 > 0, added to the r2 term. For r2 nonzero, the minimum
energy configuration is deformed to c / ð1þ �Þn̂1 þ
ið1� �Þn̂2, with � / r2. This corresponds to a deformed
spiral in which spins trace out an ellipse rather than a circle.
In this state, � / c � c / r2, so charge order is induced.

For the collinear state, Eq. (5) is modified to

Fð�Þ ¼ F0 þ 2u3jc j4 cos4�þ 2r2jc j2 cos2�: (10)

There are two cases to consider here. For u3 < 0, both
cosines can be simultaneously minimized. The minimum
in this case occurs at either � ¼ �

2 n, with integer n either

even or odd if r2 is negative or positive, respectively. This
selects theþ1; 0;�1; 0; � � � type ordering in the first line of
Eq. (6).

In the other case, u3 > 0, the situation is more interest-
ing. The minimum at � ¼ �

2 ðnþ 1=2Þ are unstable to small

r2 of either sign. Thus the generic situation in this case, at
least for small jr2j, is to obtain a generic value of 0< �<
�=4. (For sufficiently large r2, the minimum � will again
lock to the above type of solution). As a result, one obtains
the type of order observed in experiment.

The conclusion is that in the Qortho ¼ 2�ð12 ; 0; 12Þ state,
the SDW is always accompanied by charge order due to
orthorhombicity. Moreover, if the state is such that mo-
ments are present on all sites, then the charge order is
proportional to the degree of orthorhombicity, parame-
trized here by r2. This is an important conclusion of this
Letter. Interestingly, if the analysis is repeated for a rhom-
bohedral (R�3c) crystal, no charge order is induced in this
way [12]. Hence for a rhombohedral insulator [15], we
predict the occurrence of a ‘‘pure’’ SDW state.

Order of transitions.—The three phase transitions—-
metal-CO, metal-SDW, and CO-SDW—observed in ex-
periment are all first order. This behavior can be
rationalized by various mechanisms. First consider a
mean-field treatment of the Landau free energy. For sim-
plicity, we assume single-q states, and neglect the distinc-
tions between collinear and spiral spin states, taking
c ¼ c x̂ with c real. Then the full Landau free energy is

F ¼ rc 2 þ uc 4 � ��c 2 þ ~r�2 þ ~u�4: (11)

By minimizing this free energy, one obtains the phase
diagram shown in Fig. 3. For � ¼ 0, the SDW and CO
orders are tuned independently by r and ~r respectively.
However, with nonzero spin-charge coupling �, the region
near the origin is modified. In particular, the consequence
is that for systems close to the multicritical point at which
the CO phase emerges, all the transitions to the SDW phase
become first order. This may explain the discontinuous
SDW transitions seen in experiment. To explain the first
order metal-CO transition, we note that electron-phonon
interactions are significant in nickelates [16]. In particular

coupling of� to acoustic phonons renders the theory of the
metal-CO transition equivalent to the compressible Ising
model, which is known to have a first order transition [17].
Films.—We conclude with examples of how the Landau

theory is adapted to modified geometries. Pure strain is
relevant to thick films in which interfaces are not impor-
tant. For a tetragonal substrate, symmetry implies that the
strain modifies r [Eq. (3)] and r1 [Eq. (9)]. If the intrinsic
orthorhombic contribution to r1 is small, we predict that
strain can switch the wave vector from Qortho

1=2 to Qortho
0=3 , and

at the same time ‘‘turn off’’ the charge ordering. A more
severe effect occurs at an interface, due to the lack of
translational symmetry normal it. This leads to
symmetry-allowed terms which mix the SDW states with
wavevectors Q1 and Q2 (or Q0 and Q3), so that
‘‘multiple-q’’ ordering appears near the interface.
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