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We introduce a formalism to compute the neutron magnetic form factor FMðqÞ within a first-principles

density functional theory and dynamical mean field theory. The approach treats spin and orbital

interactions on the same footing and reduces to earlier methods in the fully localized or the fully itinerant

limit. We test the method on various actinides of current interest NpCoGa5, PuSb and PuCoGa5, and we

show that PuCoGa5 is in mixed valent state, which naturally explains the measured magnetic form factor.
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Compounds including elements from the actinide series
provide a beautiful illustration of the challenges posed
by correlated materials. The 5f electrons in these systems
display simultaneously itinerant (i.e., bandlike) and local-
ized (atomiclike) properties. Describing the impact of this
wave-particle duality on different physical observables,
measured using different spectroscopic probes, is an out-
standing theoretical challenge.

Neutron scattering [1] is a time-honored probe to inves-
tigate the dynamics of the magnetic degrees of freedom.
It probes the dynamic susceptibility, describing the spatial
and temporal distribution of magnetic fluctuations. In the
itinerant limit, it can be modeled in terms of a particle hole
continuum of quasiparticles, while in the localized limit it
can be described in terms of propagating spin waves. It is
generally accepted that in many materials neither a fully
itinerant nor a fully localized picture is adequate and some
combination of both is required to model the dynamics of
the spin fluctuations as in the duality model of Ref. [2].

The intensity in the magnetic Bragg peaks can be used to
obtain a real picture of the magnetization inside the unit
cell. This can be done even for materials that do not exhibit
magnetic long range order, by applying an external mag-
netic field. Classical techniques can handle a fully itinerant
or a fully localized picture [3]. However these approaches
are not sufficient for many compounds of considerable
scientific interest. It has been known for a while that
intermediate valence rare-earth semiconductors show puz-
zling magnetic properties that can be explained only by a
theory which explicitly considers the spatial extent of the
magnetic excitations [4]. Similarly only magnetic orbitals
of strong covalent nature can correctly account for the
neutron intensity in the cuprates [5]. A theory able to
describe the magnetic form factor for partly itinerant sys-
tems from first principles is needed.

Important recent experiments of Hiess et al. determined
the magnetic field induced form factor of PuCoGa5, a
material which superconducts at the remarkably high tran-
sition temperature Tc ’ 18:5 K, a record in the heavy-
fermion family [6]. The degree of itinerancy of the
f electrons is the subject of active debate and has important

consequences for the mechanism of superconductivity.
Neither the localized nor the itinerant model of the neutron
form factors fits the data well, providing strong motivation
for our theoretical developments.
In this Letter we develop a method to compute the form

factor for magnetic neutron scattering within density func-
tional theory (DFT) and dynamical mean field theory
(DMFT) [7]. We test the method on several actinide ma-
terials. The PuCoGa5 induced magnetic form factor is
consistent with correlated mixed valent nature of the ma-
terial, where both the 5f5 and 5f6 configuration are im-
portant. This is reminiscent of the mixed valent nature of
elemental plutonium [8].
The magnetic form factor FMðqÞ is defined by

FMðqÞ ¼ � 1

2�B

hMTðqÞi; (1)

where MTðqÞ ¼ M
spin
T ðqÞ þMorb

T ðqÞ is the Fourier trans-
form of the transverse component of the magnetization
density q̂� ½MðrÞ � q̂�, �B is the Bohr magneton and q
is the scattering wave vector at the Bragg peak. To avoid
ambiguity in the definition of magnetization [9], we ex-
press the form factor in terms of the Fourier transform of
the current density JðqÞ ¼ R

dre�iq�rJðrÞ. The current and
the transverse magnetization are related byMTðqÞ ¼ i

cq�
JðqÞ=q2. The current has two contributions, the spin part
JspinðrÞ and the orbital part JorbðrÞ. Expressing the defini-

tion of JorbðrÞ and JspinðrÞ in terms of field operators�sðrÞ,
we find for the form factor the following expression:

FMðqÞ ¼ 1

q2
X

ss0

Z
dre�iq�r�y

s ðrÞq

�
�
1

2
~�ss0 � qþ �ss0

~r
�
�s0 ðrÞ; (2)

where ~� is the vector of the Pauli matrices and s, s0 are the
spin indexes. For a more detailed derivation see the online
supplementary material [10]. It is useful to notice that the
limit limq!0FMðqÞ can be well defined, but it is subtle [11].
However, the form factor FMðqÞ is measured only at finite
q values and hence it is free from ambiguities.
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FMðqÞ is measured in polarized-neutron diffraction ex-
periments directly through the flipping ratio technique. In
this method an external magnetic field B is applied to the
sample, and the ratio R ¼ ðd�=d�Þþ=ðd�=d�Þ� between
the cross section for neutrons polarized parallel and anti-
parallel to B is measured. In a centrosymmetric crystal
structure with collinear magnetic moments and q ? B

the flipping ratio R satisfies ð
ffiffiffi
R

p �1ffiffiffi
R

p þ1
Þ ¼ �r0FMðqÞ=b where

b is the known nuclear scattering amplitude, FMðqÞ the
component of the magnetic structure factor parallel to B,
� ¼ 1:9132 and r0 ¼ @e2=mc2 is the classical electron
radius. More general formulas which relate the form factor
to the flipping ratio for other crystal structures and experi-
mental setups are given in Ref. [12]. For localized electrons
the form factor is commonly fitted to the following
radial dependence FMðqÞ ¼ � �

2�B
ðhj0ðqÞi þ C2hj2ðqÞiÞ,

where hjkðqÞi stands for the spatial average over the atomic
wave function of the magnetic atom (which is usually
solved in the isolation). This should be understood in

the so called dipole approximation. The exponent e�i ~q ~r

is expanded around the center of the atom as e�i ~q ~r �
j0ðqrÞ � ið ~q � ~rÞ½j0ðqrÞ þ j2ðqrÞ�, where jkðqrÞ are spheri-
cal Bessel functions of order k. Within this approximation,
the form factor is greatly simplified and in the common
experimental setup (q ? B, B ¼ Bẑ), it reduces to

FMðqÞ ¼ hszj0ðqrÞ þ 1

2
lzfj0ðqrÞ þ j2ðqrÞgi: (3)

Here r is the distance from the magnetic atom, and h� � �i
stands for the spatial and temporal average. The first and the
second term in Eq. (3) come from the spin and the orbital
contribution, respectively. The comparison of the above
expansion with Eq. (3) shows that � ¼ ��Bh2sz þ lzi
and �C2 ¼ ��Bhlzi, hence C2 ¼ �L=ð�L þ�SÞ.
Clearly the ratio C2, which is given by the shape of the
form factor, uniquely determines the size of the orbital
and spin component within the dipole approximation. Even
so, caution is necessary in interpreting experiments with
Eq. (3), since a priori the magnitude of higher order terms
beyond the dipole approximation is not known [13,14].

To compute the form factor within DFTþ DMFT, we
apply a small magnetic field B ¼ Bẑ to induce a finite
magnetic moment. We solve the DMFT problem in the
presence of magnetic field, and evaluate the correlation
function Eq. (2). When expressed in the Kohn-Sham basis,
Eq. (2) takes the form

FMðqÞ ¼ 1

q2
X

k;ij;ss0
nDMFT
k;ij �

Z

unit cell
dre�iq�rc �

kiðr; sÞq

�
�
1

2
~�ss0 � qþ �ss0

~r
�
c kjðr; s0Þ; (4)

where c kiðr; sÞ are the Kohn-Sham orbitals, i runs over
the Kohn-Sham bands, and k over the first Brillouin zone.
The ‘‘DMFT density matrix’’ nDMFT

k;ij is expressed in

terms of the DMFT Green function Gijðk; !Þ in the solid

nDMFT
ijk ¼ 1

2�i

R
d!½G�

ijðk; !Þ �Gjiðk; !Þ�fð!Þ, where

fð!Þ is the Fermi function. The form factor is thus ex-
pressed in terms of the one particle correlation function,
which is easily accessible within DMFT. Moreover, the
spatial integral is local and runs over one unit cell, which
makes local DMFT approximation particularly suitable for
this problem. We implemented Eq. (4) within the recent
realization of DFTþ DMFT [15] based on the linear aug-
mented plane wave (LAPW) basis set as implemented in
the full potential electronic structure code WIEN2K [16].
The explicit formulas for the form factor evaluation within
this basis set, as well as detail derivation of Eq. (4) are
given in the online material [10]. To solve the impurity
problem in the presence of magnetic field, we used the non-
crossing approximation [15]. Our calculations show small
anisotropic corrections to dipole approximation for the
materials studied here, suggesting that the dipole approxi-
mation is a good approximation for these compounds. For
comparison, we also compute the form factor within local
spin density approximation (LSDA) as first discussed in
Ref. [17]. In practice we evaluate the mean value of Eq. (3)
inside the atomic sphere following the lines of Ref. [18].
We perform the LSDA calculation in the presence of
external magnetic field, as implemented in WIEN2K [19].
In Fig. 1(a) we compare theoretical DFTþ DMFT and

LSDA form factors with experiments on NpCoGa5 in the
paramagnetic state [6]. Our DFTþ DMFT form factor is
in excellent agreement with experiment, while the LSDA
dramatically fails in this material. The LSDA form factor
shows a minimum at finite wave vector q. Such a large
minimum can be explained by C2 ��9:5; this occurs

FIG. 1 (color online). (a) Magnetic form factor for NpCoGa5.
Red dots are experimental data reproduced from [6]. The blue
curve with squares is the DFTþ DMFT calculation, and the
black curve with triangles is the LSDA calculation. The DFTþ
DMFT form factor agrees with experiment with the value of the
Pearson correlation coefficient RPMCC ¼ 0:95. (b) Spectral func-
tion Ajmj

ð!Þ for Np f electrons. Blue (dark gray) curves corre-

spond to the j ¼ 5=2 multiplet and green (light gray) curves to
the j ¼ 7=2 multiplet. The experimental and theoretical DMFT
temperature is T ¼ 52 K.
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since�L and�s almost cancel, but j�Lj< j�sj. An under-
estimation of the orbital moment is typical of LSDA.
Within DFTþ DMFT the atomic degrees of freedom are
treated exactly by the exact diagonalization of the atomic
5f shell in the presence of magnetic field. This ensures that
Hund’s rule coupling is properly treated, leading to anti-
parallel �L and �S, but j�Lj> j�Sj, hence C2 > 0.
For NpCoGa5 we determine the value of the coefficient
C2 ¼ 2:16. This value is consistent with localized 5f
electrons in the configuration 5f4, in agreement with
Mössbauer spectroscopy [20] and neutron diffraction ex-
periments [6,21]. At the same time NMR [22] and inelastic
neutron scattering [23] suggest that NpCoGa5 shows also
itinerant aspects of the 5f electrons. A signature of this
moderate delocalization is also apparent in our calculated
spectral function at T ¼ 52 K displayed in Fig. 1(b). A
small quasiparticle peak is formed at the Fermi level, a
signature of electron itinerancy at low energy. Next we
compute the form factor for PuSb in the ferromagnetic
state. PuSb is a metal [24], which orders antiferromagneti-
cally below TN ¼ 85 K and becomes a ferromagnet at
T ¼ 67 K [25]. Theoretically it has been shown that in
PuSb valence fluctuations are suppressed with the conse-
quent absence of a quasiparticle multiplet structure in the
spectral function [26]. This result is consistent with neu-
tron diffraction data: the form factor curve has a character-
istic maximum at finite q, a feature typical of a pure f5

configuration state for the Pu atom [27]. The LSDA calcu-
lation underestimates the orbital moment and finds a
negative C2 coefficient. Our DFTþ DMFT calculation
reproduces the f-electrons occupation value hnfi � 5:0 of

the previous experimental and theoretical works [26,27]
and indeed it is in good agreement with the measured data,
[see Fig. 2(a)]. In particular we find that there is a large
cancellation between orbital and spin moment with
�S=�L ¼ �0:74 and C2 ¼ 3:92. We now turn to

PuCoGa5. Photoemission spectra show the formation of a
quasiparticle peak at the Fermi level; however, there is a
large discrepancy in the peak height between different
measurements [28,29]. First magnetic susceptibility
measurements suggested that 5f electrons behave as un-
quenched local moments until they enter in the supercon-
ducting state [30]. In turn neutron scattering shows a
temperature independent magnetic susceptibility, implying
the absence of magnetic moments such as in �-Pu [6,31].
Electronic structure calculations qualitatively support the
picture of delocalized 5f states; however, they predict a Pu
ion close to magnetic order and a form factor shape not
observed in experiments [32,33]. Since our understanding
of superconductivity in PuCoGa5 depends on the itinerant
or localized nature of correlated electrons [34], further
theoretical and experimental investigations are compelling.
Within our DFTþ DMFT calculation we find that a qua-
siparticle peak appears at the Fermi level, see Fig. 3(b).
These results are consistent with a specific heat coefficient
�� 70 mJ=ðK2 molÞ, which compares well with experi-
ments [30], and go beyond the pioneer DFTþ DMFT
calculations, solved within the T matrix and fluctuating
exchange technique [35]. Together with a quasiparticle
peak, a mixed valent state forms, where the 5f electrons
have a finite probability to be both in the configuration
state f5 and f6. Our theoretical prediction for the 5f6

occupation probability is Pf6 ¼ 0:26, corresponding to

hnfi � 5:26 and a coefficient C2 ¼ 2:35. We plot the cor-

responding form factor curve in Fig. 3(a) together with the
form factor obtained from the LSDA calculation. As for the
previous materials, LSDA underestimates the orbital mo-
ment and it obtains a negative C2 coefficient that is incon-
sistent with experimental data. The DFTþ DMFT form
factor with C2 ¼ 2:35 well describes the neutrons data and
it accounts also for the magnetic susceptibility (see the

FIG. 2 (color online). (a) Magnetic form factor for PuSb at
T ¼ 20 K. Red dots are experimental data [27], the blue curve
with squares is the DFTþ DMFT calculation and the black
curve with triangles the LSDA calculation. The DFTþ DMFT
curve agrees with experiment with a Pearson correlation coeffi-
cient RPMCC ¼ 0:95. (b) Spectral function for PuSb. The color
legend is the same as in Fig. 1.

FIG. 3 (color online). (a) Magnetic form factor for PuCoGa5.
The blue curve with squares corresponds to the full DFTþ
DMFT calculation, the black curve with triangles to the LDA
calculation. Red dots are experimental data [6]. The DFT
+DMFT curve agrees with experiment with a Pearson correlation
coefficient RPMCC ¼ 0:70. (b) Spectral function Ajmj

ð!Þ for Pu
f-electrons. The color legend is the same as in Fig. 1.
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supplementary material [10]). The value of C2 ¼ 2:35 is
naturally explained by the mixed valence picture obtained
theoretically for PuCoGa5. For a free Pu3þ ion solved
in the intermediate coupling C2 ¼ 3:83, hence �L=
�S ¼ �1:83 [3]; as a mixture of the configuration f6 is
included in the many body ground state, the ratio �L=�S

becomes more negative and therefore C2 decreases. As
pointed out in Ref. [6] the FMðqÞ shape is very different
from the one expected for a pure 5f5 configuration of
an isolated Pu ion, as for example is found in PuSb, see
Fig. 2(a). At the same time it is very different from the
LSDA prediction. Hence, the magnetic properties of
PuCoGa5 are not captured either by a free moment picture
or by an itinerant picture.

In conclusion, in this Letter we presented a new ap-
proach to compute the neutron magnetic form factor. The
LSDA treatment fails to reproduce the correct form factor
since the exchange energy is orbital independent and there-
fore Hund’s rules are not respected. On the contrary
DFTþ DMFT includes the atomic physics needed to de-
scribe strongly correlated systems. Application of DFTþ
DMFT to PuCoGa5 suggests an explanation of the results
of Ref. [6] in terms of a mixed valence picture where the
ground state of Pu fluctuates between two distinct configu-
rations: f5 and f6. We indeed checked that this picture
accounts for the values of the specific heat and suscepti-
bility as well as for the shape of photoemission spectra.
We find a close similarity between the DFTþ DMFT
valence histogram of PuCoGa5 and �-Pu, suggesting a
close analogy of the local physics in these two materials;
the magnetic form factor of PuCoGa5 would then be very
similar to that of �-Pu, for which experiments are notori-
ously difficult. Finally, mixed valence is an attractive
mechanism for pairing in heavy fermions [36], which
could account for the high temperature superconductivity
in PuCoGa5.
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