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Unconventional Superfluid Order in the F Band of a Bipartite Optical Square Lattice
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We report on the first observation of bosons condensed into the energy minima of an F band of a
bipartite square optical lattice. Momentum spectra indicate that a truly complex-valued staggered angular
momentum superfluid order is established. The corresponding wave function is composed of alternating
local Fys 3, & iF, 3, orbits and local S orbits residing in the deep and shallow wells of the lattice,
which are arranged as the black and white areas of a checkerboard. A pattern of staggered vortical currents
arises, which breaks time-reversal symmetry and the translational symmetry of the lattice potential. We
have measured the populations of higher order Bragg peaks in the momentum spectra for varying relative
depths of the shallow and deep lattice wells and find remarkable agreement with band calculations.
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Orbital physics plays a central role for magnetism,
superconductivity, and transport properties of rare earth
and transition metal compounds including high 7. cuprate
systems or heavy fermion systems, which have been a
subject of intense research for more than two decades
[1,2]. The advent of optical lattices (i.e., quantum gases
arranged in synthetic lattices formed by light) has raised
hopes that certain aspects of such systems could be studied
in a precisely controlled environment without many of the
complexities usually associated with material systems
[3,4]. Unfortunately, the wave function of bosons in their
ground state is positive definite under very general circum-
stances [5,6], which significantly limits their usefulness for
simulating many-body systems of interest. Fermions, on
the other hand, are significantly harder to prepare in optical
lattices [7,8] and the realization of large filling factors
required to access orbital physics at large angular momenta
appears difficult, if not impossible. This has recently trig-
gered extensive theoretical research driven by the vision to
explore orbital physics with bosons via targeted population
of higher bands [9-13]. Interesting many-body phenomena
were predicted including supersolid quantum phases in
cubic lattices [14,15], quantum stripe ordering in triangular
lattices [16], flat bands and Wigner crystallization in hon-
eycomb lattices [17], or incommensurate superfluidity,
which spontaneously breaks time-reversal, rotational,
and translational symmetries [18]. These and many other
exciting proposals all rely upon the requirement that higher
bands could be selectively populated and cross-
dimensional coherence could be established. Clever new
techniques have recently made it possible to populate the
P band [19-22]. However, the D and F bands in optical
lattices with their particular relevance in condensed matter
systems have remained practically unexplored by
experiments.

In this Letter we report the first observation of bosons
condensed in the F band of a two-dimensional (2D) bipar-
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tite optical lattice. Full cross-dimensional coherence with
a lifetime on the order of 10 ms is established. The ob-
served momentum spectra exhibit a characteristic pattern
of sharp maxima, which are well explained by a complex-
valued superfluid order parameter composed of alternating
local Fys_3, * iF, 3, orbits and local S orbits. A pattern
of staggered local angular momenta and staggered vortical
currents arises commensurable with the plaquettes of the
lattice with the consequence of broken time-reversal sym-
metry. The proposed nature of the superfluid order (repre-
senting a remarkable example beyond Feynmans no-node
theorem [5,6]) is confirmed by evaluating the Bloch func-
tions corresponding to the observed condensation quasi-
momenta. We find remarkable agreement of the observed
momentum spectra with calculations based upon these
Bloch functions.

By crossing two optical standing waves derived from
laser beams with 100 wm 1/e? radius and a wavelength
A = 1064 nm, we produce a (quasi-2D) light shift potential

Vix,y) = — %e—@f/wé)m(eikx + eeik)
+ ei()(eiky + Ee—iky)|2’ (l)

providing two classes of (tube-shaped) lattice sites (denoted
as A and B) arranged as shown in Fig. 1(a). Here, k =
27/ A, m is experimentally adjustable (around unity) and €
is fixed to = 0.9 due to imperfect reflection optics used in
the experiment. For details we refer to Ref. [22].
Adjustment of the parameter 6 lets us tune the difference
of the well depths of A and B sites. For 6§ < 7/2 the A
sites are more shallow than the B sites and vice versa.

An efficient population of excited bands is obtained by
optimizing a population swapping procedure described in
more detail in Ref. [22]. Initially a Bose-Einstein conden-
sate of Rubidium (}”Rb) atoms is prepared at a temperature
of about 70 nK (=0.7T,) and the lattice potential is
ramped up within 80 ms to Vy/E.. = 16.6 for a value
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FIG. 1 (color online). (a) The bipartite lattice comprises two
classes of lattice sites denoted by A and B. The grey area shows
the Wigner-Seitz unit cell of the ‘A sublattice. (b), (c), and
(d) Observed populations of Brillouin zones (BZs) after applying
the population swapping procedure with final values of
(6/m, Vy/Ew.) = (0.61,5.8), (0.66, 8.3), (0.69, 13.3), respec-
tively. (e) Schematic of the 6th [dark (blue and purple) areas]
and 7th [light (orange) areas] BZs. The eight open (red) circles
mark the points, where the atoms are observed to gather in (c). In
the center, the first BZ is reconstructed by translations of subsets
of the 6th BZ via reciprocal lattice vectors indicated by the (red)
dashed arrows. (f) 3D representation of the image in (c).
(g) energy surface of the 7th band with degenerate minima
indicated by filled black circles corresponding to those in (e).
(h) Band energies E at K(; ;) versus the well depth V},. The black

circle indicates a crossing of the 7th [dotted (red) line] and the
6th [dashed (blue) line] bands.

0 < 7r/2 such that the well depth of the B sites signifi-
cantly exceeds that of the A sites (E.. = h?k*/2m de-
notes the recoil energy with the atomic mass m). A ground
state lattice is thus formed with most atoms residing in the
deeper B wells. The large well depth yields nearly com-
plete suppression of tunneling. Subsequently 6 is rapidly
changed (within 0.2 ms, which is shorter than the nearest
neighbor tunneling time) to a final value 6, above 7/2
such that now the A wells are significantly deeper than the
B wells. Finally, V,, is adiabatically decreased during
0.6 ms to admit tunneling again. Optionally a 2 ms long
phase is appended, where 6 is adiabatically tuned to some
desired value followed by a variable hold time.

In Figs. 1(b)-1(d) the population of different bands is
illustrated. To obtain these pictures, population swapping
is carried out with ¢ and V,, optimized for maximal
population of the desired band. The lattice beam intensity
is then exponentially decreased with a time constant of
430 ws and after 30 ms absorption imaging is applied. This
yields images of momentum space, where the population
P[n, ¢] in the nth band for some quasimomentum ¢ and
energy E[n, g] is mapped to some point within the nth
Brillouin zone (BZ) related to g by a reciprocal lattice
vector. This mapping requires that E[n, ¢] does not cross
some other E[n’, ¢] during the adiabatic switch off process.

As a consequence of such band crossings a part of the band
population may be mapped to an adjacent BZ. The image
in Fig. 1(b) (with 8/7 = 0.61 and V)/E,.. = 5.8) matches
well with the 4th BZ, while in Fig. 1(d) (with /7 = 0.69
and V,/E.. = 13.3) the 9th BZ is found to be the most
populated. This directly indicates the numbers of the bands
that have been populated to be n =4 and n =29,
respectively.

For the case of interest in this Letter in Fig. 1(c), where
0/7 = 0.66 and V,/E,.. = 8.3, the assignment of a single
BZ is not possible. Instead the atoms share the 6th and 7th
BZ with emphasis on the 6th BZ. This is illustrated by
Fig. 1(e), where the shapes of the 6th [dark (blue and
purple)] and 7th [light (orange)] BZs are sketched. One
recognizes in Fig. 1(c) and 1(f) that the BZs are not evenly
populated but rather a large fraction of the atoms accumu-
late at eight quasimomenta at the inner boundary of the 6th
BZ highlighted by the open (red) circles in Fig. 1(e). These
atoms can be identified to reside at the minima of the
energy surface of the 7th band (i.e., the lowest of the
four possible F bands). In Fig. 1(g) we show a plot of
this band derived from a band calculation involving a
Fourier expansion of the Bloch functions with 11 harmon-
ics in each dimension and the potential of Eq. (1). Indicated
in Fig. 1(g) by filled black circles, four local minima of the
energy surface arise at the quasimomenta K(Ll), K(,L,l),
K, -1), K11, where K, ,) = %hk(w% + wP) with inte-
gers v, p and X, y denoting the unit vectors in x and
y directions. We interpret the accumulation of atoms in
the band minima as a result of a condensation process
induced by tunneling and collisions, which transfer energy
into the third dimension perpendicular to the lattice, which
is only weakly confined by the external trap potential
(40 Hz trap frequency). Our band calculation also shows
that, when V), is ramped to zero, a crossing between the 7th
and the 6th band occurs for quasimomenta in the vicinity
of these energy minima [cf. Fig. 1(h)]. Thus, the energy
minima of the 7th band are mapped into the 6th rather than
the 7th BZ. The equivalence of the open (red) circles in
Fig. 1(e) and the filled black circles in Fig. 1(g) is shown in
the BZ illustration in Fig. 1(e), where the 6th BZ is mapped
onto the first BZ via translations with reciprocal lattice
vectors [indicated by the (red) dashed arrows].

In Figs. 2(a)-2(c) momentum spectra are shown for a
hold time in the lattice of 1 ms, a well depth parameter
Vo/Ewe = 8.3 and /7 = 0.66, 0.70, 0.75, respectively.
The upper row shows the experimental observations ob-
tained by rapidly (< 1 ws) switching off the lattice poten-
tial and absorption imaging after 30 ms of ballistic
expansion. The presence of sharp Bragg peaks at quasimo-
menta K, ,) for odd integers v, u clearly demonstrates
cross-dimensional coherence. One recognizes the absence
of a zero momentum component (v = u = 0). In fact, the
lowest order components arise at the condensation points
in Fig. 1(g). Limited by the finite expansion time, the
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FIG. 2 (color online). In (a), (b), and (c) momentum spectra
are shown for a hold time of 1 ms, Vy/E,. = 8.3 and 0/7 =
0.66, 0.70, 0.75, respectively. Observations (calculations) are
shown in the upper (lower) row. (d) Population ratio for higher
order and zero order Bragg peaks plotted versus €. Observations
(calculations) are shown by the symbols (solid lines).
(e) Temporal evolution of the populations of Bragg peaks. The
solid lines are exponential fits applied in the wings of the graphs
to determine relaxations times. (f) Temporal evolution of band
populations for V/E,.. = 8.3 and /7 = 0.67. The solid lines
are exponential fits. (g) 1/e times for depopulation of the 6th and
7th BZ and repopulation of the 1st BZ plotted versus 6.

interaction energy and finite imaging resolution, the widths
of the observed Bragg peaks set a lower bound of the
coherence area of 3 wm X 3 wm, which is to be compared
to the sample size of about 20 wm X 20 um. The kinetic
energy within the lattice plane exceeds the collision energy
per particle (= E,.) such that a description of the band
structure in terms of single particle Bloch functions ap-
pears justified. The lower rows in Figs. 2(a)-2(c) show
calculations of momentum spectra of the coherent super-
position ¥ = ox,, T codx,_, of the real-valued Bloch
functions corresponding to the two inequivalent condensa-
tion points. Only for choices of “c” close to the values
“*+i” good agreement with the observations is found. In
Fig. 2(d) the 6 dependence is studied more quantitatively.
In this graph the symbols show the population ratios be-
tween higher order [(v, u) = (3, 1), 3, 3), (7, 1)] Bragg
peaks and the zero order Bragg peak ((v, u) = (1, 1))

observed for varying values of #. The peak populations
are obtained by counting the number of atoms in a small
circular region covering an individual Bragg peak and
subtracting the number of atoms found in a surrounding
ring-shaped area of the same size. The theoretical curves
(solid lines) do not involve any free parameters.

In Fig. 2(e) we study the time scales for the formation
and the decay of coherence by evaluating momentum
spectra at fixed values Vy/E,.. = 8.3 and /7 = 0.66 for
different holding times. The graph shows the Bragg peak
populations [obtained as in (d)] for the peaks identified in
the inset. During the first few milliseconds, which amounts
to a few tunneling times (= 1 ms), all peak populations
increase before decay sets in with a time scale correspond-
ing to the collisional relaxation of the band populations,
which exceeds the on-site collision time (= 0.1 ms) by
nearly 2 orders of magnitude. Both time scales are deter-
mined by exponential fits as 1.8 ms and 9.1 ms for the zero
order peak (black diamonds) and 2.9 ms and 10.1 ms for the
first order peak identified by red rectangles.

To investigate collision-induced band relaxation, in
Fig. 2(f) the fraction of atoms found in the different BZs
after population of the 7th band are plotted versus the hold
time for V/E,.. = 8.3 and /7 = 0.67. The 4th and the
5th BZ, which maintain nearly constant population during
the observation time, have been omitted for better legibil-
ity. The initially prepared population in the 6th and 7th
BZ decays and the 1st BZ is repopulated. The correspond-
ing relaxation times are determined by means of exponen-
tial fits (solid lines) to be 12.3 ms and 19.9 ms, respectively,
which are 2 orders of magnitude larger than the estimated
collision time. Similarly, the relaxation times for other
values of # are determined and plotted in Fig. 2(g). One
recognizes that around 6/ = 0.68 the relaxation times
attain maximal values. The local S orbits of the wave
function W, (a detailed discussion of its geometry follows
below) become maximally developed for this setting of 6.
Because the ground state wave function has vanishing
amplitude in the shallow wells, its overlap with W is
reduced for this case, and thus collisional decay into the
ground state is inhibited.

The wave function W has remarkable properties illus-
trated in Fig. 3, where its local amplitude (grey areas
indicate large amplitude) and phase [(colored) numbers]
is sketched. In the deep wells W resembles the superpo-
sition 30) = itf[o3) of eigenfunctions i, ,,) of a 2D
harmonic oscillator with n, m oscillator quanta in x and y
directions, which display a spatial (2x* — 3x) = i(2y* — 3y)
dependence at the well center. The relative phases *“=*i”
maximize the local angular momentum yielding a maxi-
mally isotropic shape of the local F orbits, such that the
atoms (which interact repulsively) can best avoid each
other. This minimizes the mean field energy and hence
W represents the true ground state of the F' band. For P
orbits a similar prediction is discussed in Refs. [9,10].
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FIG. 3 (color online). Orbit configuration of order parameter
W . The grey areas characterize the antinodal structure of the
orbits, the (colored) numbers indicate the local phases.

In contrast, in the shallow wells, ¥ mimics the harmonic
oscillator § orbit ¢ o;. The checkerboardlike arrangement
of S orbits and F orbits with alternating angular momen-
tum provides equal local phases on both sides of the
tunneling junctions and thus maximizes the tunneling ef-
ficiency. The inner and outer dashed rectangles denote the
unit cells of the lattice and of W, respectively. The sub-
lattice of shallow wells possesses a pattern of staggered
vortical currents commensurate with its plaquette struc-
ture, which match with the alternating orbital currents in
the deep wells. As a consequence W breaks the translation
symmetry of the lattice and time-reversal symmetry. Order
parameters with similar properties have been recently pre-
dicted in the ground states of driven optical lattices [23,24].

Finally, the assumption of an incoherent mixture of
phases ¢k, and ¢k, would necessarily imply their
spatial separation, since at the shallow wells both Bloch
functions share common local S orbits. A phase separation
scenario, however, requires excess kinetic energy at the
phase boundaries due to inhibited tunneling and excess
mean field energy. A compensating local anisotropy, suffi-
cient to enforce local condensation in a single condensa-
tion point, is not available in our experiment. The band
minima are found to coincide in their energies to better
than 1073E,,, for a wide range of settings of € and 7 in
Eq. (1). This should be compared to the collision energy
per particle in the F band estimated to be on the order of
E.... We thus may conclude that the small local imbalance
of the standing wave intensities (< 10%), which is un-
avoidable due to the use of finite-sized Gaussian beams
and a finite-sized atomic sample, does not notably lift the
degeneracy. Also the underlying harmonic trap should not
favor phase separation since ¢ o, and d’K(l,, , experience
the same trapping potential. A quantitative discussion of
phase separation for our system requires theoretical efforts
beyond the scope of the present work. Our theoretical
considerations are for zero effective temperature of the

atoms within the F band. Accounting for finite-
temperature effects is conceptually difficult since the sys-
tem resides in a metastable state. Stringent measurement
schemes for the temperature in optical lattices are a subject
of an ongoing debate even in the ground state [25]. A direct
observation of the staggered orbital order could be possibly
achieved with detection schemes operating in configura-
tion space with single site resolution as recently developed
by several groups [26].
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