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B. Pasquiou, G. Bismut, E. Maréchal, P. Pedri, L. Vernac, O. Gorceix, and B. Laburthe-Tolra
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We observe interband transitions mediated by dipole-dipole interactions for an array of 1D quantum

gases of chromium atoms, trapped in a 2D optical lattice. Interband transitions occur when dipolar

relaxation releases an energy larger than the lattice band gap. For symmetric lattice sites, and a magnetic

field parallel to the lattice axis, we compare the measured dipolar relaxation rate with a Fermi golden rule

calculation. Below a magnetic field threshold, we obtain an almost complete suppression of dipolar

relaxation, leading to metastable 1D gases in the highest Zeeman state.
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Collisions and interactions between cold atoms trapped
in optical lattices are subject to intense investigations.
These studies are, for example, relevant for novel strongly
correlated quantum phases [1], and for metrology [2]. For
most of the experiments to date, focus was made on contact
interactions between atoms in the lattice vibrational ground
state. Dipole-dipole interactions (DDIs), which have at-
tracted considerable attention, especially since the recent
production of Bose-Einstein condensates (BECs) with
highly magnetic chromium atoms [3], introduce important
new features in this context, because they can couple atoms
in different lattice sites due to their long range character
[4]. Here we show that DDIs can be used as well to couple
different bands in the lattice, when magnetization changing
collisions [5] release an energy overcoming the gap be-
tween bands. In addition to their interest for quantum
computing, higher lattice orbitals may be used to study
novel quantum phases, as suggested in [6].

Magnetization changing collisions in a cylindrically
symmetric system lead to mechanical rotation in analogy
to the seminal work of Einstein and de Haas (EdH) [7], as
suggested by [8–11]. Here, we study dipolar relaxation
of spin S ¼ 3 Cr BECs loaded in a strongly confining 2D
optical lattice defining an ensemble of 1D quantum gases
in cylindrically symmetric sites. We observe a threshold
as a function of the magnetic field, corresponding to the
resonant exchange of a quantum of spin excitation and
a quantum of rotational excitation in the lattice. Below
the threshold, dipolar relaxation does not release enough
kinetic energy to induce the change in angular momentum,
and we observe an almost complete suppression of dipolar
relaxation for atoms in the highest energy Zeeman state
(mS ¼ þ3); 1D quantum gases in this state remain well
below the degeneracy temperature [12] for tens of ms.
Above threshold, dipolar relaxation occurs, with a transfer
of population into excited bands of the lattice. While
rotating states in each lattice site are then predicted [11],
and the observation of such rotation would be a proof of
the EdH effect, these rotating states are not reached at

our lattice depths due to fast tunneling between sites in
excited band states.
In our experiments, almost pure chromium BECs in the

absolute ground statemS ¼ �3 [13], with 20 000 to 30 000
atoms, are loaded into a 2D optical lattice. The lattice is
realized by two independent and orthogonal retroreflected
1D optical lattices, detuned from each other by 160 MHz.
All beams derive from a 532 nm solid state single line laser.
As the standing wave is turned on sufficiently slowly
(within 15 ms), the BEC is loaded adiabatically in the
lowest energy band of the 2D lattice, whose maximal depth

in each direction is about 25 ER, where ER ¼ h2

2m�2 is the

recoil energy, with � ¼ 532 nm, and m the mass of 52Cr
atoms. The energy difference in a lattice site between
the fundamental and the first excited state, !L=2� ¼
120 kHz, is much larger than the chemical potential, and
the motion is frozen along two dimensions. The length of
the harmonic oscillator ground state wave function in the

lattice sites aL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!L

p
is about 40 nm, and the peak

density is raised up to 3� 1021 m�3. As the tunneling time
from one lattice site to the next is long (40 ms), we consider
that the BEC is split into an array of a few hundred
independent 1D quantum gases.
We then reduce the magnetic field B, so that the Larmor

frequency !0 ¼ gJ�BB=@ (gJ is the Landé factor, �B is
the Bohr magneton) is adjusted close to !L. The direction
of B, ~uz, is set parallel to the direction of the 1D tubes, ~uL
(i.e., perpendicular to the two standing waves axes). With
a radio-frequency sweep, we transfer the atoms in the
mS ¼ 3 state: dipolar relaxation then becomes energeti-
cally allowed.
To characterize dipolar relaxation, we implement the

following measurement procedure. We measure the num-
ber of atoms in the different bands of the lattice by reduc-
ing the lattice depth in 200 �s, which is slow compared
to the time scale for band excitation in the lattice (10 �s),
but fast compared to the time scale for thermalization
(on the order of 1 ms): this band mapping procedure [14]
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adiabatically transfers the quasimomentum distribution in
the lattice into the real momentum distribution, which we
image after a time of flight equal to 5 ms. The laser beam
for absorption imaging being perpendicular to the tubes,
we image the population of the different bands of one
of the 1D lattice (along y), and the velocity distribution
along the tubes (axis z), as shown in Fig. 1.

When B< Bth ¼ @!L=ðgJ�BÞ, we observe almost no
heating along the lattice tubes, and no population in higher
bands. Typical results for magnetic fields above Bth are
represented in Fig. 1. We observe population in the first
excited band (v ¼ 1), and, within our signal to noise limit,
no population in the second one (v ¼ 2). In addition, we
also observe a strong heating of the cloud along the z axis.
Population in v ¼ 1 and the effective (see below) tempera-
ture along the tubes are both represented in Fig. 2 as a
function of B.

To explain these results, we recall that DDI between
two atoms of magnetic moments �̂1 ¼ gJ�Bŝ1 and
�̂2 ¼ gJ�Bŝ2 (ŝi¼ð1;2Þ are spin operators), reads

Vddð~rÞ ¼ �0ðgJ�BÞ2
4�

ŝ1 � ŝ2 � 3ðŝ1 � ~urÞðŝ2 � ~urÞ
r3

; (1)

where ~r ¼ r ~ur is the relative position of the two atoms, and
�0 is the vacuum permeability. Vdd is invariant under
simultaneous rotation of spin and space coordinates along
any axis, so that the quantum number mJ ¼ mS þmL

associated to the projection of the total angular momentum

Ŝz þ L̂z is conserved in dipolar collisions. In the presence

of B, when ~uz k ~uL, and for the specific case of cylindri-
cally symmetric lattice sites, mJ remains a good quantum
number: dipolar relaxation results in the creation of rotat-
ing states of quantized orbital momentum.
There are two distinct channels of dipolar relaxation

when atoms are in mS ¼ 3 [15]. The first channel corre-
sponds to �mS ¼ �1, the second channel to �mS ¼ �2,
and the corresponding release of kinetic energy is respec-
tively @!0 and 2@!0. Because of conservation of angular
momentum, the first (second) channel associated to
�mL ¼ 1 (2) creates a rotating state of pairs (xþ iy) [ðxþ
iyÞ2], with x ¼ x1 � x2 and y ¼ y1 � y2 the relative coor-
dinates. The corresponding energy costs are respectively
@!L and 2@!L. As a consequence, both dipolar relaxation
channels are expected to become energetically possible
for !0 >!L, which explains the threshold observed in
Fig. 2. Dipolar relaxation above threshold therefore in-
volves two routes, which both populate excited vibrational
states in the lattice. Channel 1 populates the first excited
lattice band, and, as ðxþ iyÞ2 ¼ ðx1 þ iy1Þ2 � 2ðx1 þ
iy1Þðx2 þ iy2Þ þ ðx2 þ iy2Þ2, channel 2 populates both
the first and the second excited bands, and creates (mo-
tional) entangled states.
As shown in Fig. 2(b), the threshold for dipolar relaxa-

tion does depend on the lattice depth, and it corresponds
to !0 >!L ¼ 2�� 120 (80) kHz for 25 (12) ER.
Furthermore, the width of the observed threshold is com-
parable to the width of the second excited band in the
lattice [equal to 16 (43) kHz for 25 (12) ER]. As channel 2
is the only one leading to population of the second excited
band we deduce that most of our signal comes from it.
Finally, Fig. 2(b) also shows that raising the lattice depth
leads to stronger heating above threshold. Such an increase
cannot be solely interpreted as the effect of an increased
density (the density only increases by only 40% while
dipolar relaxation roughly doubles from 12 Er to 25 Er),
and will be related below to the reduction of the width of
the second excited band.
We interpret the strong heating along the tubes above

threshold as the consequence of collisional deexcitation
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FIG. 1 (color online). Band mapping results above threshold.
The false colored picture is an average of 4 absorption images of
the BEC released from the lattice. (a) Integrated population
profile along z: the first excited band (second Brillouin zone,
BZ) in the y direction is populated, contrary to below threshold
(which gives the sharper peak). (b) Integrated profile along y
showing a non-Gaussian velocity distribution; lines are results
of a double Gaussian fit, yielding an effective temperature.
(c) Sketch of the 2D lattice arrangement: the 1D traps are along
z, the imaging beam is sent along x.
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FIG. 2 (color online). Evidence for a threshold in dipolar
relaxation: (a) v ¼ 1 population as a function of Larmor fre-
quency after 25 ms of dipolar relaxation for 25 Er; (b) Effective
temperature along the tubes as a function of Larmor frequency
after 75 ms, for two different lattice depths (circles: 12 Er;
squares: 25 Er). The shaded areas represent the respective widths
of the second energy band. Lines are guides for the eye.
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(vibrational quenching due to collisions with atoms in
v ¼ 0, see [16]). Because of conservation of orbital mo-
mentum, vibrational quenching is not possible for rotating
states; however, simple calculations show that a singly or
doubly quantized vortex does not survive to a tunneling
event. As the tunneling time in the excited bands of the
lattice is fast (1 ms in the first band, and 50 �s in the
second band for 25 Er), atoms rapidly lose their orbital
momentum. A symmetry approach shows that v ¼ 2
atoms can undergo collisional deexcitation with atoms in
v ¼ 0 (contrary to atoms in v ¼ 1) [16]: an atom in v ¼ 2
can collide with an atom in v ¼ 0, producing two atoms in
v ¼ 0; therefore population accumulates only in the first
excited band, as observed in Fig. 2. As the population in
v ¼ 1 rises, vibrational deexcitation between two colliding
v ¼ 1 atoms becomes efficient. Vibrational deexcitation
from both bands therefore contributes to the observed
heating; this heating is an indirect proof that atoms cease
to rotate due to tunneling.

An important feature of our experimental data is that the
velocity distribution along the tubes rapidly becomes non-
Gaussian (see Fig. 1). Collisional deexcitation produces
pairs of back-to-back moving atoms at a relative momen-
tum set by the lattice depth, so that the created velocity
distribution is highly out of thermal equilibrium. It would
be expected that it remains so in a pure 1D geometry with
only contact interaction, because of the integrability of
such systems [17]. But in our situation the system is not
purely 1D, as the deexcited atoms have enough energy to
populate higher bands in the lattice, and DDI may also
come into play [18]. Despite this lack of integrability, the
observed velocity distribution clearly departs from thermal
equilibrium even after tens of collisions per particle. This
intriguing lack of thermalization also has an impact on
how we measure heating rates in our system: instead
of fitting the velocity distribution along z by a simple
Gaussian, we evaluate its second moment, hence defining
an effective temperature.

With the measured heating rate, and the measured popu-
lation in v ¼ 1, we deduce the total rate of kinetic energy
deposited in the system by dipolar relaxation above thresh-
old. We plot in Fig. 3 the population in v ¼ 1 and the
effective temperature as a function of time. In this experi-
ment, the atoms are first promoted to m ¼ 3 while B
is below the threshold, and then B is raised slightly above
the threshold (the threshold is reached at t ¼ 25 ms in
Fig. 3). Below threshold, we observe no heating, and above
threshold, we measure an energy increase rate of
215ð�30Þ nKms�1.

To account for these results and estimate a rate parame-
ter, we develop a model describing two particles in a
Gaussian trap, assuming that dipolar relaxation can be
described by a local density dependent rate (as in the 3D
and 2D cases, see [15]). DDI at threshold couples a

two-body state �0 / expð� z2

2z20
Þ expð� �2

2�2
0

Þ describing a

pair of atoms in the ground state of a lattice site

[z0 ¼ ð 2@
m!z

Þ1=2 � �0 � ð 2@
m!L

Þ1=2] to rotating states which

are excited not only perpendicularly but also along the
lattice tubes. In the case of channel 2, the matrix element

of DDI writes as 3Sd2

2r3
expð2i�Þ [15], where d2 ¼ �0ðgJ�BÞ2

4� :

the ground state is only coupled to even vibrational states

along the tubes, corresponding to wave functions �n
2 /

�2 expð2i�Þ expð� �2

2�2
0

Þ expð� z2

2z2
0

ÞH2nð zz0Þ (where Hn stands

for the nth Hermite polynomial). Similarly, channel 1 cou-

ples to odd vibrational states �n
1 / � expði�Þ expð� �2

2�2
0

Þ�
expð� z2

2z2
0

ÞH2nþ1ð zz0Þ. As an example, we calculate (for

z0 � �0):

V0
1 � h�0jVddj�0

1i ¼ 3

�
�

2

�
1=2

S3=2d2
1

�2
0z0

�0

z0
; (2)

V0
2 � h�0jVddj�0

2i ¼
3

ð2�Þ1=2 Sd
2 1

�2
0z0

: (3)

We see that V0
1 � V0

2 , as z0 � �0: at threshold, dipolar

relaxation is therefore dominated by channel 2. This is
consistent with the observed fact that the width of the
threshold is comparable to the width of the second excited
band of the lattice.
We stress that for our values of the lattice depth, V0

2

(respectively V0
1 ) is much smaller than the width of the

second (first) excited band, �2 (�1): for 25 ER (with !z ¼
2�� 400 Hz), V0

2=h � 100 Hz, V0
1=h � 30 Hz, while

�2=h � 16 kHz, and �1=h � 1:6 kHz. Thus dipolar re-
laxation should be described by a Fermi golden rule. It is
important though to take into account the coupling of the
initial state to all energetically accessible states in the
excited bands of the lattice, i.e., to all states �n

i within
an energy band qualitatively set by �i: each of the excited
vibrational states (in the ith band) along the lattice axis can
be considered as a continuum of states of width �i, and
the coupling of the initial state to these many continua can
be described as a sum of Fermi golden rules [19]. In the
specific case where channel 2 is dominant this leads to
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FIG. 3 (color online). Dynamics of dipolar relaxation when the
magnetic field is increased above threshold. Threshold is reached
at t ¼ 25 ms. (a) shows the effective temperature (see text), and
(b) the measured proportion of atoms in the first excited band.
Lines are guides for the eye.
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�2 ¼ 9�

8

d4S2
ffiffiffiffi
m

p

�2
0@

2
ffiffiffiffiffiffi
�2

p n3D0 N � 1

23=2
�2n

3D
0 N: (4)

Interestingly, the obtained 1D dipolar relaxation rate
parameter �2 depends on the trapping parameter �0, simi-
larly to what we found in 2D [15]. In addition, as noticed
above, �2 depends on the width of the excited band: in that
respect, resonant dipolar relaxation at threshold in the
lattice is not one dimensional. For 25 ER, we find �2;th �
2� 10�19 m3 s�1. To relate the measured heating rate of
215 nKms�1 to a rate parameter, we average over the
density of the collection of the 1D gases (see [15] for a
similar calculation in 2D), and, assuming that dipolar
relaxation occurs solely through channel 2, find �2;exp �
ð4:6� 1:4Þ � 10�20 m3 s�1. The slight disagreement be-
tween �2;th and �2;exp can be due to the correlations in the

1D quantum gases: in our situation the 1D interaction
parameter � [20] is close to 1.

Below threshold, we measure an extremely low heating
rate, and we deduce � ¼ ð5� 1:5Þ � 10�22 m3 s�1. This
is typically 3 orders of magnitude smaller than for 3D
degenerate quantum gases [15]. As we observe almost no
heating for up to 100 ms, this strong reduction enables us
to reach a regime where the 1D quantum Bose gas is
metastable, despite its highly out-of-equilibrium magnetic
state. This important result opens the way to stable spinor
mixtures in 1D.

As shown in Fig. 4, both the cylindrical symmetry of the
lattice sites and the proper alignment of the magnetic field
along this symmetry axis are needed to reach a regime
where dipolar relaxation is strongly suppressed (at low B).
The observed suppression below threshold is thus directly

related to cylindrical symmetry and conservation of angu-
lar momentum. Indeed, dipolar relaxation above threshold
should populate rotating states in the lattice, in the spirit of
the EdH effect. However, due to tunneling in higher lattice
bands the rotating states are not produced in our experi-
ment. Using deeper lattices should strongly reduce tunnel-
ing and enable the coherent excitation (when V0

2 > �2, at

typically 75 ER) of such rotating states in the 2D lattice.
Operating in 3D optical lattices in the Mott regime with
two atoms per site would also provide a resonant character;
as collisional deexcitation in 3D lattices is strongly re-
duced [6], one may reach an intriguing situation where
an insulating Mott state in the ground band and a superfluid
state in the excited band are coupled by DDIs.
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