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We report on the first experimental realization of optimal linear-optical controlled phase gates for
arbitrary phases. The realized scheme is entirely flexible in that the phase shift can be tuned to any given
value. All such controlled phase gates are optimal in the sense that they operate at the maximum possible
success probabilities that are achievable within the framework of postselected linear-optical implementa-
tions with vacuum ancillas. The quantum gate is implemented by using bulk optical elements and
polarization encoding of qubit states. We have experimentally explored the remarkable observation that
the optimum success probability is not monotone in the phase.
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Linear-optical architectures belong to the most promi-
nent platforms for realizing protocols of quantum informa-
tion processing [1,2]. In small-scale applications of
quantum information, such as in quantum repeaters, they
will quite certainly play a key role. Unsurprisingly, signifi-
cant research effort has been dedicated in recent years to
experimental realization of universal linear-optical quan-
tum gates. Linear-optical quantum gates are probabilistic
by their very nature [1]. Therefore, the exact trade-offs
between properties of a gate, such as entangling power, and
its probability of success are in the focus of attention.

We explore this trade-off for the first time experimen-
tally. We present data from an experimental realization of a
linear-optical, postselected controlled phase gate imple-
menting the following operation on two qubits:

j, k) = il j, k), k=01, (1)

where u;; = ¢'® and ugy = ug; = u; o = 1. It is key to
this experiment that this angle can be chosen in a fully
tunable fashion, hence adding a flexible scheme to the
linear-optical quantum-information-processing toolbox.

Controlled phase gates are important members of this
toolbox. For example, they play a key role in the circuit for
quantum Fourier transform [3] or quantum simulation
tasks [4]. They are entangling quantum gates, in general,
and, together with single-qubit operations, they form sets
of universal gates for quantum computing. Notice that
the controlled-NOT gate can be obtained by applying a
Hadamard transform to the target qubit before and after a
controlled phase gate with phase shift 7. What is more,
nonmaximally entangled states can be used in the nonlocal
implementation of controlled phase gates [5].

Previous experimental work was devoted to the linear-
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an experiment with phases different from 77 but with a
nonoptimal probability of success. The optimal success
probability has recently been identified theoretically in
Ref. [8]. This optimum probability we have indeed reached
in the experiment described in this Letter. We observe
the quite remarkable trade-off between the phase shift
applied by the gate and its success probability, which
is—surprisingly—not monotonous in the phase on [0, 7].
The success probability decreases rapidly for small phases
but remains almost constant for phases between 7/4 and
7. This experiment is hence expected to be interesting both
conceptually as well as technologically, since a fully tun-
able bulk linear-optical architecture is presented, uplifting
tunable schemes for quantum state preparation [9] to the
level of quantum information processing.

Theoretical framework.—For postselected linear-optical
gates, the beam splitter matrix A describing a general linear
optics network is constrained by the action of the gate (1)
as perAlc;, cjley, ¢)] = u;;6;,6;,, where i, j, k, [ =0,1.
The left-hand side is the permanent of a matrix filled by
matrix elements of A [10]. ¢, = (0, 1) and ¢; = (1, 0) are
vectors describing the usual dual-rail encoding into Fock
states on two modes [11]. Because of postselection, only
outcomes in the computational subspace span{|c;, ¢;)} are
considered, giving rise to 16 quadratic equations in A, ,.
The solutions are all of the form A = 1, ® B, where two
modes are bypassed and B describes the interaction of the
two logical-1 modes. This amounts to a balanced Mach-
Zehnder interferometer inside of which phase shifts ¢ . are
applied to both modes and one mode’s amplitude is
damped by a factor of 6. It turns out [8] that for ¢ €
[0, 7] the optimal success probability takes the form

optical realization of a special case of the controlled phase p.(p) = (1 +2 sinf +93/2 Sin7T - sing 1/2)—2’
gate with the fixed phase ¢ = 7 [6]. Reference [7] presents ‘ 2 4 2
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FIG. 1. Conceptual scheme of the gate. Vertically (V) and

horizontally (H) polarized components of the same beam are
drawn separately for clarity. In polarization beam splitters PBS1
and PBS2 the vertical components are reflected. Half-wave
plates HWPb and HWPc act as “beam splitters” for V and H
polarization modes. F1 and F2 are filters (attenuators); F1 acts on
the both polarization modes, F2 on the H component only. Phase
shifts ¢, and ¢ _ are introduced by proper path differences in
the respective modes. HWPa and HWPd just swap vertical and
horizontal polarizations. In the final setup they are omitted for
simplicity, and the second qubit is encoded inversely with
respect to the first qubit.

and the phases in the inner Mach-Zehnder interferometer
(between HWPb and HWPc; see Fig. 1) are defined by

o+ g0+77)—1

cot¢h = cot:

+ ((2 — 2cosg)/4sin

and the damping of one arm is done by an attenuator
(neutral-density filter) with an amplitude transmissivity of

5 1+ 2sin§ —2(2 — 2cosp)!/4 cos& " 12
1+ 2sin +2(2 - 2cosg)!/4 cos& "

The two attenuators with amplitude

y = p}/ * in the upper beams are used to damp the ampli-
tude of the bypassed modes to compensate for the overall
losses in the lower beams.

Details of the experiment.—As the starting point of this
experiment we generate a pair of photons in the process of
type-I spontaneous parametric down-conversion. The laser
beam of 250 mW of cw optical power emitted by a krypton-
ion laser at 413 nm impinges on the LilO5 crystal. Pairs of
photons at 826 nm are collected by using single mode
fibers serving also as spatial filters. Subsequently, polar-
ization controllers are employed to adjust the horizontal
polarization of the photons.

The half-wave plates (HWPs) and quarter-wave plates
(QWPs) in the input arms (see Fig. 2) are used to set the
input states. Subsequently, the photons are superposed on
the first polarizing beam splitter PBS1 which transmits
horizontal and reflects vertical polarization. Because of
imperfections, the transmissivity for horizontal polariza-
tion is only 95% (the remaining 5% are reflected).
Polarization beam splitters also introduce parasitic phase
shifts between vertical and horizontal polarization compo-
nents. After leaving the PBS1, the photons in the upper arm
are subjected to the action of half-wave plate HWP21.

transmissivity

HWP@45deg

piezo
BD

FIG. 2 (color online). Scheme of the actual experimental setup
(see the text and Ref. [17] for details).

When set to 22.5° it performs the transformation |H) —
(IH) + [V))/V2, V) = (IH) = |V))/2, where |H) and
|V) denote horizontal and vertical polarization states, re-
spectively. The lower arm is also equipped with a half-
wave plate (HWP11), but it is set to zero (its presence just
guarantees the same optical paths, dispersion effects, etc.,
in both arms). Behind the wave plates there are the beam-
divider assemblies BDA1 and BDA2. They consist of two
beam dividers (BD) splitting and subsequently rejoining
horizontal and vertical polarizations. BDA2 is equipped
with gradient neutral-density filters F21 and F22 (see
Fig. 2). This way one can perform arbitrary polarization
sensitive losses. BDA1 is used just to equilibrate the beam
position and the optical length of both arms. It also avoids
potential problems with different dispersion effects in the
two arms. After leaving the beam-divider assemblies, the
photons propagate through half-wave plates HWP12 and
HWP22. HWP22 is set to 22.5°, reversing thus the trans-
formation imposed by HWP21. HWPI12 is set to 45° to
compensate for the polarization flip between the H and V
polarizations performed by BDAI1. The lower arm is
equipped with a gradient neutral-density filter F1 to apply
polarization-independent losses. The gate operation itself
is completed by overlapping the photons on the second
polarizing beam splitter PBS2. To be able to perform
complete state and thereby process tomography, we em-
ploy polarization analysis in both output arms. The analy-
sis consists of QWPs and HWPs followed by polarizing
beam splitters, cutoff filters, and single mode fibers leading
to single photon detectors.

Gate operation.—The setup is then adjusted to perform
the gate operation. First we set filters F21 and FI to
introduce the required losses. After that the wave plates
HWP21 and HWP22 are set to 22.5°. The phase in the
beam-divider assembly BDA?2 is set to maximize the visi-
bility of the interferometer formed by PBS1 and PBS2. The
precise tuning of the gate is then performed by switching
between the inputs |H;, R,) and |V, R,), where indices 1
and 2 denote the input modes and R stands for the right
circular polarization. Using the circular detection basis in
the second output arm, we can observe the phase applied
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by the gate when the polarization of the first input photon
flips from |H) to |V'). In this configuration we also tune the
phase shift inside the beam-divider assembly BDA2 and
the phase shift between the two arms of the Mach-Zehnder
interferometer formed by PBS1 and PBS2.

Results.—Gradually we have adjusted the gate to apply
7 phases in the range between 0 and 7r. Each time, we have
performed complete process tomography and estimated the
process matrix by using the maximum likelihood method.
Fidelities of the process lie in the range from 84% to 95%
(see Table I). Figure 3 shows an example of an experimen-
tally obtained process matrix and its theoretical counter-
parts for ¢ = 7/2.

For each selected phase we simultaneously measured
two-photon coincidence counts between detectors Dy +
Dsy, Dy + Dsy, Dy + Dyy, and Dy + Dy, each for
3 X 3 combinations of polarization measurement bases in
the output arms. This amounts to measuring projections
onto horizontal and vertical, diagonal [|D) = (|H) +
[V))/+/2] and antidiagonal [|A) = (|H) — |V))/~/2], and
right circular [|R) = (|H) + i|V))/~/2] and left circular
[IL) = (|H) — i|V))/+/2] polarizations. The unequal de-
tector efficiencies were compensated by proper rescaling
of the measured coincidence counts [12]. Each measure-
ment was done for 36 different input product states,
namely, for 6 X 6 combinations of polarization state vec-
tors |H), |V), |D), |A), |R), and |L) of each input photon.
This complex measurement provided us with tomograph-
ically complete data enabling us to fully characterize the
implemented operation by quantum process tomography
[13,14] as well as to reconstruct density matrices of output
states for each used input state.

Active stabilization.—Each setting of an input and out-
put polarization basis was preceded by an active stabiliza-
tion. For the purpose of the stabilization, the fixed input
state and output detection basis were always used. In this
setting the visibility in the interferometer formed by PBS1
and PBS2 was measured. If this visibility was lower than a
selected threshold (usually 94%), then the positions of

TABLE L. Process fidelities (F,), average (F,,) and minimal
(F min) output-state fidelities, average (2,,) and minimal (P;,)
output-state purities, and actually observed (p; o) and theoreti-
cally predicted (p, ) success probabilities for different phases
(). All values are expressed in percents.

P F)( Fav Fmin ?av ?min

0 939 956 835 96.0 873
0.057 948 96.1 906 965 87.0
0.1257 91.0 903 77.0 954 86.6

px,ubs px,lh

85.9 1.3 100
36.6 = 0.8 348
19.0 0.5 21.0

0257 842 881 733 89.6 670 11.2+x03 133
0.57 863 888 815 903 759 9.0x02 90
0.75m 840 86.8 633 89.8 705 80*x02 88

T 835 856 710 922 827 120*x0.1 11.1

FIG. 3 (color online).

Choi matrices for the gate with ¢ =
r/2. The left top panel shows the real part of the reconstructed
process matrix, while the left bottom one displays its imaginary
part. The process fidelity F,, = 86%. The two right panels show
the ideal matrix.

MT1 (two-photon temporal overlap) and MT2 (equilibra-
tion of interferometer arms) were optimized and the phase
drift was compensated. Finally, the required polarizations
were set and data were accumulated within 5 s.

Process tomography.—Any quantum operation can be
fully described by a completely positive map and—accord-
ing to the Jamiolkowski-Choi isomorphism—represented
by a positive-semidefinite operator y on the tensor product
of input and output Hilbert spaces [15]. In our case, y is a
16 X 16 square matrix. From the measured data we can
reconstruct y for any setting of ¢ by using maximum
likelihood estimation [14,16]. To quantify the quality of
the operation we calculate the process fidelity; if xiq
is a one-dimensional projector, its common definition is
F, = Tt xxial/(Tr[x]Tt[ xiq]). Here x;q represents the
ideal transformation corresponding to the controlled phase
gate. Specifically, xiq = ;i ri—v.uli. Nk Il ® Uli, j) X
(k, 1)U, where U stands for the unitary operator on two
qubits defined by Eq. (1). We have also reconstructed the
density matrices of output two-photon states corresponding
to all product input states |j, k), j, k € {H,V, D, A, R, L}.
This was done for all values of ¢. An important parameter
characterizing the gate performance is the fidelity of output
states oy defined as F' = (4 gyl pourl ¥ our)> where |4 ) =
Ul i, and |y, ) is the input state vector. Table I contains
the average and minimal values of state fidelities for differ-
ent phases. Fidelities F,, are averaged over all output states
corresponding to our 36 input states; F,;, denote minimal
values. Another important characteristics is the purity of
the output state p,,, defined as P = Tr[p2,,]. If the input
state is pure, the output state is expected to be pure as well.

Trade-off in success probabilities.—The most important
result of this Letter—aside from the technological impli-
cations—is the experimental verification of the trade-off
between the phase shift applied by the gate and the
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FIG. 4 (color online). Success probability of the gate.

corresponding success probability of the gate. We have
estimated the success probability for each value of the
selected phase shifts. It was calculated as a ratio of the
number of successful gate operations per time interval and
the number of reference counts during the same interval
(measured with no filters and with the wave plates set to 0).
We have determined the success probability for all selected
input states. These probabilities were averaged and the
standard deviations of the means were calculated. Notice
that the calibration measurements collect coincidence
counts behind the setup (by using the same detectors as
in the subsequent measurements); thus, all the *“techno-
logical” losses in the setup (about 60%) and low detector
efficiencies are included in the calibration. Therefore, the
estimated success probabilities are not burdened by these
technological losses. They can be compared with the theo-
retical predictions in Table I and in Fig. 4. One can see a
very good agreement with the theoretical prediction.
Conclusions.—We have built the first implementation of
the tunable linear-optical controlled phase gate which is
optimal for any value of the phase shift. Changing the
parameters of the setup the gate can apply any phase shift
from the interval [0, 77] on the controlled qubit. We have
thoroughly tested the performance of the gate by using full
quantum process tomography. Obtained process fidelities
range from 84% to 95%. We have determined that the main
limiting factors for the fidelities are imperfect two-photon
spatial and temporal overlap and birefringence of PBS
causing partial distinguishability between different polar-
ization modes. We have also experimentally verified that
all our controlled phase gates are optimal in the sense that
they operate at the maximum possible success probabilities
that are achievable by linear-optical setups. The experi-
mental verification of this trade-off between the phase shift
applied by the gate and the corresponding success proba-
bility of the gate is the most notable result of our work. It
demonstrates the contraintuitive fact that the optimal suc-
cess probability is not monotonous with the phase shift
increasing from O to 7. It is the hope that the flexible tool

established here proves useful in devising further linear-
optical circuits for quantum information processing and
that ideas developed in this work find their way to realiza-
tion in fully integrated optical architectures.
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