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Two identical finite quantum systems prepared initially at different temperatures, isolated from the

environment, and subsequently brought into contact are demonstrated to relax towards Gibbs-like

quasiequilibrium states with a common temperature and small fluctuations around the time-averaged

expectation values of generic observables. The temporal thermalization process proceeds via a chain of

intermediate Gibbs-like states. We specify the conditions under which this scenario occurs and corrobo-

rate the quantum equilibration with two different models.
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The derivation of thermodynamic phenomena from de-
terministic time-reversible dynamics constitutes one of the
primary goals of physics. This long-standing conundrum
has sparked recently a new wave of activity in the quantum
domain, where current studies of the objective follow
essentially two tracks. The first one, pioneered by
Schrödinger [1], leads to an understanding of canonical
thermalization when the system of interest is coupled to a
much larger system, a quantum giant [2–6]. The studies
along the second track explore the ‘‘microcanonical’’ ther-
malization within a single isolated quantum system [7–12]
and employ exact numerical diagonalization of many-body
models [13,14].

Here, we focus on a different route by elucidating the
process of mutual equilibration between two finite quan-
tum ‘‘peers,’’ prepared initially at different temperatures
and then set into a contact. We consider two systems, A and
B, that are identical, in the sense that they have identical
Hamiltonians: HA ¼ HB � HS. The Hamiltonian HS has
N S nondegenerate energy levels f�kg, k ¼ 1; . . . ;N S,
i.e., HSj�ki ¼ �kj�ki, with eigenstates fj�kig. The sys-
tems interact through a contact, which allows only for
energy transfer without exchange of particles. The
Hamiltonian of the composite bipartite system thus reads

H� ¼ HA � 1B þ 1A �HB þ �Hint; (1)

with � being a dimensionless coupling constant. The in-
teraction Hamiltonian Hint ¼ YA � YB, with operators
YA ¼ YB � Y, is invariant under permutation A $ B and
does not commute with the Hamiltonian HS [15].

We denote the energy eigenvalues and the corresponding
eigenstates of the Hamiltonian H� by fE�

ng and fjc �
nig,

respectively. The quantities of interest, i.e., the energy level
populations pA

k ðtÞ and pB
k ðtÞ, can conveniently be calcu-

lated by using the product basis jc 0
nðk;jÞi ¼ j�ki � j�ji,

which is also the eigenbasis of the composite system for
� ¼ 0. We label the energies E0

n according to their decom-
position into the sum of the single system energies:
E0
nðk;jÞ ¼ �k þ �j ¼ Enðj;kÞ. To shorten notations, we shall

use either n or kj instead of nðk; jÞ. While combinations
k ¼ j produce the nondegenerate energy levels E0

kk ¼ 2�k,
each two levels related by the permutation of indices
k $ j, with k � j, are doubly degenerate, i.e., E0

kj ¼ E0
jk.

The transformation from the product basis jc 0
ni to the

eigenbasis at a certain interaction strength � > 0, jc �
ni, is

given by the matrix �, with the elements �n;m ¼
hc 0

mjc �
ni. Throughout this work we further assume for

the Hamiltonian (1) with � � 0 both the nondegeneracy
E�
n � E�

m for n � m and the ‘‘nondegenerate energy gap
condition’’ [3,5,6,10], meaning that nonzero energy differ-
ences E�

n � E�
m and E�

s � E�
w are not equal, apart from the

trivial case s ¼ n, w ¼ m.

The energy level populations pAðBÞ
k ðtÞ for system A (B)

are given by the partial trace over system B (A) of the
composite system density matrix %ðtÞ; for example,
pA
k ðtÞ ¼

P
j%kj;kjðtÞ, where %ðtÞ is expressed in the product

basis. In the case of canonical initial states, where only
diagonal density matrix elements are initially nonzero,
their evolution can be described by the linear map

%n;nðtÞ ¼
X
m

jU�
n;mðtÞj2%m;mð0Þ; (2)

where U�
n;mðtÞ ¼ P

le
�iE�

l
t=@��

l;n�l;m. It is apparent that all

necessary information is encoded in the energy spectrum
fE�

ng and in the transformation matrix �.
For any choice of the system initial states %Að0Þ and

%Bð0Þ, the mutual equilibration is guaranteed (in a sense
detailed below) as long as the nondegenerate energy gap
condition holds. Because of the parity A $ B, all eigen-
states of the HamiltonianH� are either symmetric, jc �

kji ¼
jc �

jki, or antisymmetric, jc �
kji ¼ �jc �

jki. Therefore, for
every eigenstate of the composite system, expectation
values for any local observable O (energy, level popula-
tions, etc.), associated with one quantum peer only, would
be the same for the second peer: OA ¼ OB. Having the
total system prepared at time t ¼ 0 in a product state
%ð0Þ ¼ %Að0Þ � %Bð0Þ, we turn on the interaction by set-
ting � > 0. Then, after some characteristic relaxation time
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�rel, the system is expected to reach quasiequilibrium,
where all diagonal elements of the two subsystem-reduced
density matrices obey the relation %A

kkðtÞ ’ %B
kkðtÞ. The

respective total equilibrium system energies can be eval-
uated from the condition of energy conservation (assuming
a diminutive interaction energy)

EA;B
eq ’ ½EAð0Þ þ EBð0Þ�=2; (3)

where ES ¼ P
k�k%

S
k;k with S ¼ A or B. This is not a

genuine equilibrium, since the populations still evolve in
time [16], but their recurrences occur on time scale �rec,
which is larger than any relevant time scale [12,17].

To gain an analytical insight, we start out from the
limiting case in which the transformation matrix takes on
a simple form: Any infinitesimally small interaction � ! 0
will lift the twofold degeneracy E0

kj ¼ E0
jk, yielding the

pair of a symmetric and an antisymmetric eigenstates in

the form ð1= ffiffiffi
2

p Þðjc 0
kji � jc 0

jkiÞ, k � j. These eigenstates

are nondegenerate and separated by a finite splitting. The
eigenstates whose energies E0

kk ¼ 2�k were nondegenerate
at � ¼ 0 are perturbed marginally only in this limit. By
assuming this so resulting tridiagonal structure for the
transformation matrix �n;m, we find that the relaxation

process leads to the arithmetic-mean quasiequilibrium
state, with the corresponding populations reading [18]

pA;B
k ’ 1

2½pA
k ð0Þ þ pB

k ð0Þ�: (4)

This tridiagonal structure is guaranteed to hold as long as
each off-diagonal, nonzero matrix element of the interac-
tion Hamiltonian �jHint

n;mj is smaller than the correspond-

ing energy level difference in the composite system,
�En;m ¼ jE0

n � E0
mj.

The characteristic feature of the arithmetic-mean equili-
bration is that two systems, when initially prepared in

canonical states at different temperatures, %S
canðTSÞ ¼

e�HS=kBTS=ZS, ZS ¼ Trðe�HS=kBTSÞ, with the diagonal
elements

%S
k;kðTSÞ � pS

k ¼ 1

ZS

e��k=kBTS ; (5)

where kB is the Boltzmann constant, do relax to states with
the same mean energy, but their energy level populations
[Eq. (4)] are no longer Gibbs-like. In order to deviate from
the limit in Eq. (4) the transformation matrix � needs to
acquire a more complex structure. This is achieved by
cranking up the interaction strength between the two sys-
tems. Provided that there occurs a sufficiently large num-
ber of nonvanishing off-diagonal elementsHint

n;m, increasing

the strength of interaction, but still remaining within the
weak-coupling limit

�ð�intN � �int1 Þ � �NS
� �1; (6)

wherein f�intn g is the spectrum of the interaction
Hamiltonian Hint, then yields interaction blocks in the

matrix �n;m larger than those 2� 2 blocks. We expect

that the presence of a more complex block structure en-
sures the evolution of canonical initial states %A

canðTAÞ and
%B
canðTBÞ towards a common Gibbs-like equilibrium

%A;BðTFÞ, meaning that the corresponding diagonal ele-
ments are given by the relation (5) with the common
temperature TF. The ‘‘equilibrium’’ temperature TF can
be evaluated from Eq. (3), to yield with Eq. (5):

X
k

"k
e�ð"k=kBTFÞ

ZF

¼1

2

X
k

"k

�
e�ð"k=kBTAÞ

ZA

þe�ð"k=kBTBÞ

ZB

�
: (7)

We numerically validate our prediction by using two
types of quantum models. Within the Bose-Hubbard model
we consider the system consisting of N ¼ 5 on-site inter-
acting bosons on a one-dimensional lattice, with L ¼ 5

sites and hard-wall boundaries. This results in N S ¼
ðLþN�1Þ!
ðL�1Þ!N! ¼ 126 energy levels in each single system and

N ¼ N S �N S ¼ 15 876 levels in the composite sys-
tem [18]. Figure 1(a) depicts the setup, which assumes that
the two systems overlap only by one site, where the bosons
from the different confinements do interact. We also cor-
roborated our findings with a randomly synthesized model,
for which the Hamiltonian HS and the interaction operator
Y are independently sampled from a finite-dimensional
Gaussian orthogonal ensemble of random matrices [18].
In contrast to the former many-body interacting boson
model, where the interaction is strictly local, here the
interaction is now acting globally, interweaving systems
A and B.
For both models we find solutions that are based on the

exact diagonalization of the corresponding bipartite
Hamiltonians. Our main results are depicted in Fig. 1.
Upon increasing the coupling constant � within the
weak-coupling limit [Eq. (6)], we detect a crossover
from the arithmetic-mean quasiequilibrium populations
[Eq. (4)] towards the canonical populations [Eq. (5)] with
TS ¼ TF.
An intriguing question is how the quantum equili-

bration unfolds in time. Figure 2 displays our finding that
equilibration proceeds along a quasistatic pathway: The
relaxation of an initial canonical state abides a sequence of
time-dependent Gibbs-like states with time-dependent
temperatures TðtÞ, intermediate between the initial tem-
perature TAðBÞ, to reach a common, final temperature TF.

This observed persistence of Gibbs shape is remarkable
indeed. The only relevant result we could find in this
context is that of thermal relaxation dynamics of a stylized
model [19].
We next consider the case with an initial preparation

given by pure states. Reproducibility of quantum thermal
processes with a single ‘‘typical’’ state [20] carries impor-
tance in view of the foundations of statistical physics [7,21]
and many-body quantum calculations [22]. We employ
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here typical states constructed as the sums over eigenstates
[20]; i.e., we use

jc S
TS
ð0Þi ¼ 1ffiffiffiffiffiffi

ZS

p X
k

ei�
S
k e��k=2kBTS j�ki: (8)

The ensemble of typical states is defined by the uniform
measure on the torus �S1 � �S2 . . . � �SN , �

S
k 2 ½0; 2��. The

results shown in Figs. 2(a) and 2(b) by the dashed lines
confirm our expectation: A single, randomly sampled,
initial product wave function jc A

TA
ð0Þi � jc B

TB
ð0Þi follows

the equilibration pathway for canonical initial states with
good accuracy. Both systems A and B are prepared initially
in pure states, implying vanishing von Neumann entropies
SA;BðtÞ ¼ �kBTr½%A;BðtÞ ln%A;BðtÞ�, i.e., SAð0Þ ¼ SBð0Þ ¼
0. The isolated composite system remains in a pure state
forever, and thus SA�BðtÞ � 0. This, however, is no longer
so for the subsystem entropies SAðtÞ and SBðtÞ, which start
to grow. From the triangle inequality it follows that
SAðtÞ ¼ SBðtÞ � SðtÞ. The entropy SðtÞ is a measure for

entanglement between the subsystems [23]: Its monotonic
growth thus indicates that the equilibration process entan-
gles the quantum peers; see Fig. 3(a).
The systems cannot rigorously reach canonical equilib-

rium; therefore, the entropy SðtÞ saturates to the value
below the entropy of the Gibbs state at temperature TF.
The resulting equilibrium system density matrices %AðtÞ
and %BðtÞ remain nonstationary and possess both diagonal
and off-diagonal elements evolving in time. Following the
recipe from Ref. [6], the deviation from the canonical state
is estimated by using the trace-norm distance D ¼
Trhj%SðtÞ � �%Sjit=2, where the bar denotes the time aver-
age h. . .it. This quantity is limited from above [6], so that
from Eq. (8) in Ref. [6] we find that D 	 0:6 in our case.
From our numerics we obtain D ’ 0:43.
For an operator O, which is nondiagonal in the eigenba-

sis of the Hamiltonian HS, the presence of the off-diagonal
elements in the system density matrices will produce addi-
tional fluctuations around the average value �OS ¼
Trð �%SOÞ. Moreover, some of the off-diagonal elements
may possess nonzero time averages. This might cause a
constant shift of the observable averaged value �O from its
canonical value: �OS ¼ �OS � Tr½ �%S

canðTFÞO�. However,
for highly nonsparse patterns of nonzero off-diagonal ele-
ments OS

kl and %S
kl, we may expect that the respective

fluctuations of the expectation value OSðtÞ will be
suppressed, exhibiting dynamical typicality [24]. Even
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FIG. 2 (color online). Relaxation pathways for the model
depicted in Fig. 1(a). Both systems are initially prepared in
canonical states (solid lines) and in pure states randomly
sampled from the corresponding ensembles of typical states
[Eq. (8)] (dashed lines). (a) The evolution of the mean energies
and (b) the corresponding temperatures TðtÞ of the hot system A
and the cold system B are shown by the upper (red) and lower
(blue) lines, respectively. (c) The energy level populations of
both systems are displayed at different moments of time (dots),
marked by the corresponding symbols in (a) and (b). The lines
correspond to the canonical populations [Eq. (5)] at the tem-
peratures evaluated from the temporal values of mean system
energies [see Fig. 1(b)].
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FIG. 1 (color online). (a) A system of bosons confined into two
overlapping confinements is analyzed with the Bose-Hubbard
model. (b) Energy spectrum of a single system. The (red) line
displays the dependence of the system mean energy, i.e., ES ¼P

k�ke
��k=kBT=ZS, on temperature T. The initial temperatures of

the ‘‘hot’’ system, kBTA=�s ¼ 94:91, and the ‘‘cold’’ system,
kBTB=�s ¼ 18:98, are indicated by the (blue) dots. The equilib-
rium temperature kBTF ¼ 33:92�s, calculated by using the total
energy conservation [Eq. (7)], is indicated by the (red) star.
(c) Instantaneous equilibrium energy level populations for sys-
tems A (left column) and B (right column), in the regime of
arithmetic-mean (top) and thermal (bottom) equilibrations. The
arithmetic-mean populations are depicted by the top (blue) solid
lines, and the canonical populations for the temperature TF

by the bottom (red) lines. The natural energy unit �s is given
by the mean energy level spacing of the single system: �s ¼
ð�N S

� �1Þ=ðN S � 1Þ. The similar behavior is demonstrated by

the second model; see supplementary material [18] for further
model details.
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for a system as small as ours, with N S ¼ 126 states, this
mechanism works surprisingly well; see Fig. 3(b).

Thermal quantum relaxation within an isolated compos-
ite quantum system is a deterministic process and produces
an output in the form of a Gibbs-like equilibrium, with
diagonal elements which are almost canonical, for the
initial preparation [Eq. (5)] and also for initial typical
pure states [Eq. (8)]. An arbitrary choice of the initial state
of the composite system H� does not guarantee relaxation
towards Gibbs-like quasiequilibrium states for its halves.
Also, the state of the composite system after relaxation is
far from being Gibbs-like due to strong entanglement
between its halves. Moreover, in order to render the ther-
modynamical relaxation of quantum peers, two necessary
conditions need to be fulfilled, namely, (i) the interaction is
restricted to the validity range of Eq. (6), and (ii) the total
composite system obeys the parity A $ B. A natural ques-
tion then is, what will happen if either of the conditions (i)
or (ii) is violated? For (i) the systems will nevertheless
equilibrate even with the interaction strength set beyond
the weak-coupling limit. The corresponding equilibrium
state, however, no longer assumes a Gibbs-like structure.
The part (ii) with nonidentical systems A and B is more
intricate. Although it is still possible to obtain thermal
relaxation between two different systems (see [18]), the
mismatch of system spectra and their relatively small sizes
necessitates a much larger system-system coupling con-
stant � [18]. The resolution of this problem demands

systems of much larger sizes and, therefore, lies outside
the exact diagonalization scheme employed here.
The quasistatic character of the thermal relaxation al-

lows for the tuning of one of the two quantum peers to a
Gibbs-like state at any temperature between initial tem-
perature values TA and TB, thus serving as an alternative
protocol for the preparation of thermal states of quantum
systems [25]. The state-of-the-art experiments with ultra-
cold atoms provide the natural playground for exploration
of the thermal relaxation between two different species of
atoms [26].
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FIG. 3 (color online). (a) Von Neumann entropy of a single
system vs time for the model shown in Fig. 1(a). Both systems
are initially prepared in pure states randomly sampled from the
ensembles of typical states [Eq. (8)]. The dashed line indicates
the entropy of the Gibbs state at the temperature TF. (b) The
population dynamics n5ðtÞ of the fifth site (i.e., the site making
the thermal contact) for subsystem A is compared with the
corresponding canonical value at the temperature TF. Note that
the time average of n5ðtÞ, 0.9673, differs from its canonical
value, 0.9651, by 0.3% only. (c) The absolute values of reduced
density matrix elements h�mj%AðtÞj�ni at t ¼ 0 and (d) after
equilibration.
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