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We study a simple quasispecies model for evolution in two different habitats, with different fitness

landscapes, coupled through one-way migration. Our key finding is a dynamical phase transition at a

critical value of the migration rate, at which the time to reach the steady state diverges. The genetic

composition of the population is qualitatively different above and below the transition. Using results from

localization theory, we show that the critical migration rate may be very small—demonstrating that

evolutionary outcomes can be very sensitive to even a small amount of migration.

DOI: 10.1103/PhysRevLett.105.268101 PACS numbers: 87.23.Kg, 02.50.�r, 05.70.Fh, 87.10.�e

Biological dispersal—the movement of organisms
between habitats—is a ubiquitous phenomenon with im-
portant and wide-ranging consequences. In the natural
environment, organisms expand their ranges, colonize
new habitats, and can undergo speciation if they become
spatially isolated. Dispersal plays a key role in determining
spatial and temporal patterns of genetic diversity in all
organisms [1]. For sexual organisms, with low mutation
rates, population subdivision into demes, connected by
migration, can have important effects on genetic diversity
[2,3], while in continuous space, transmission of unfit
alleles can prevent the expansion of a species’ range [4].
For asexual, rapidly evolving organisms such as bacteria
and viruses, dispersal also facilitates the emergence of
new diseases and resistance to known treatments. The
‘‘source-sink’’ paradigm [5,6], in which migration from a
favorable habitat maintains organisms in an unfavorable
one, has recently been used to explain the microbial genet-
ics of urinary tract infections [7]. However, despite its
importance, a general understanding of how migration
affects mutation-selection balance in microbial systems is
lacking. In particular, one would like to know how migra-
tion changes the proportions of different genotypes in
evolving microbial populations.

In order to study the role of migration we introduce in
this Letter a simple statistical physics model comprising
two different environmental habitats coupled by oneway
migration of asexual organisms from the primary to the
secondary habitat as well as mutations, which give rise to
clusters of closely related genotypes—‘‘quasispecies.’’ We
find that the model undergoes a dynamical phase transi-
tion: at a critical value of the migration rate, the time to
reach the steady state diverges. For subcritical migration
rates, the steady-state population in the secondary habitat is
made up of a quasispecies ‘‘native’’ (best adapted) to this
habitat, as well as other, nontrivial, quasispecies, which are
not native to either habitat. Above the critical migration
rate, the native quasispecies in the secondary habitat is
wiped out by immigrants from the primary habitat. We
use results from localization theory to gain further insight

into the transition and to show that even a small amount of
migration can have an important effect on evolutionary
dynamics.
In our model, organisms have M possible genotypes. Ni

and ni denote the abundance (number density) of organ-
isms with genotype i in the primary and secondary habitat,
respectively. The populations in the two habitats are

thus described by the vectors ~N ¼ fNig and ~n ¼ fnig.
Organisms migrate from the primary to the secondary
habitat with rate k. Within each habitat, mutations trans-
form organisms from genotype i to j with rate �Aij, where

Aij is a symmetric adjacency matrix, to be discussed later.

Organisms of genotype i reproduce at a rate �i �
P

jNj in

the primary habitat and �i �P
jnj in the secondary hab-

itat. The vectors ~� ¼ f�ig and ~� ¼ f�ig thus describe the
fitness landscapes (or the maximal growth rate for organ-
isms with genotype i) in each habitat. The terms �P

jNj

and �P
jnj in the growth rates account for population

saturation due to finite resources, as in the logistic equa-
tion. This model is based on the para-mu-se (parallel
mutation and selection) [8] version of quasispecies theory
[9], widely discussed in the biological, chemical, and
physical literature [10,11].
The time evolution of the system is governed by the

following set of equations for i ¼ 1; . . . ;M:

_N i ¼ Ni

�
�i �

X

j

Nj

�
þ �

X

j

AijðNj � NiÞ; (1)

_n i ¼ ni

�
�i �

X

j

nj

�
þ �

X

j

Aijðnj � niÞ þ kNi; (2)

where we have assumed that the primary habitat is large, so
that the loss of individuals due to migration has a negligible
effect on its population [12]. For the calculations presented
here, we suppose that the fitness values �i, �i are inde-
pendent random numbers drawn from a distribution Pð’Þ,
common to both habitats. Thus genotypes which are
well adapted in the primary habitat are likely to be malad-
apted in the secondary habitat. We also assume that the
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mutation rate � is below the error threshold [9,10], so that
localized quasispecies are formed in both habitats in the
absence of migration.

We first present an analytical solution for the steady state
(which is independent of the initial condition for k > 0, as
long as the mutation matrix A is irreducible). For the
primary habitat, Eq. (1) can be linearized [8,9] by intro-

ducing new variables ~X ¼ ~N expðRt
0

P
jNjðt0Þdt0Þ. We have

d ~X=dt ¼ W ~X, where the matrix Wij ¼ �ij�i þ ��ij,

(�ij ¼ Aij � �ij

P
kAik being the graph Laplacian). For

large t, ~XðtÞ ffi e�1t ~�1, where �1 is the largest eigenvalue

of W and ~�1 is the corresponding eigenvector. Denoting

~e ¼ ð1; . . . ; 1Þ, the steady-state abundances ~N� are
obtained by insertion into Eq. (1), yielding

~N � ¼ �1

ð ~�1
T � ~eÞ

~�1: (3)

We now determine the steady-state genotype abundances
in the secondary habitat in a similar way by reducing
Eq. (2) to a linear inhomogeneous equation d~x=dt ¼
V ~xþ k ~N� expðRt

0

P
jnjðt0Þdt0Þ, where Vij ¼ �ij�i þ

��ij and ~x ¼ ~n expðRt
0

P
jnjðt0Þdt0Þ. We obtain for t ! 1:

~n � ¼ k
XM

�¼1

~c �
T � ~N�

ntot � ��

~c �; (4)

where ~c � and �� are the eigenvectors and eigenvalues of
V (ordered as �1 > �2 > . . . ) and ntot is the total steady-
state population in the secondary habitat, which is deter-
mined self-consistently as the largest root of

ntot ¼ k
XM

�¼1

ð ~c T
� � ~N�Þð ~c T

� � ~eÞ
ntot � ��

: (5)

The above equations hold for any fitness landscape and
mutation matrix. Although most of our results are valid
quite generally, in order to illustrate the most important
features of the model, we now assume that the mutation
graph is a one-dimensional closed chain, in which muta-
tions are possible only between neighboring genotypes
[i.e., Aij ¼ 1 if i ¼ ðMþ j� 1ÞmodM, and zero other-

wise]. We further suppose that the fitness can take only
two values: 1 and 0 with probability p and 1� p, respec-
tively. Since it has been suggested that viable genotypes
form an interconnected network in genotype space [13], we
shall consider the case p � 1, so that the fitness landscape
is characterized by ‘‘islands’’ of fit genotypes separated by
unfit ones.

Figure 1 shows how the steady-state abundances ~n� in
the secondary habitat depend on the migration rate k.
When k is very small, ~n� is peaked around the longest
sequence of maximal fitness values: this peak corresponds
to the ‘‘native’’ (or best-adapted) quasispecies for the
secondary habitat. When k is very large (much larger
than the mutation rate �), the secondary habitat becomes

dominated by immigrants from the primary habitat and ~n�

tends to the primary-habitat steady state ~N�.
In contrast, for intermediate migration rates, the genetic

composition in the secondary habitat is highly nontrivial.
As k increases from zero, the quasispecies native to the
secondary habitat is joined by additional quasispecies
peaks. These are not native to either habitat but are instead
determined by the overlap of eigenvectors in the primary
and secondary habitats [as in Eq. (4)]. As the migration rate
is increased slightly further from 0.002 to 0.003, these new
peaks dominate completely and the native quasispecies of
the secondary habitat disappears. This effect can be trig-
gered by a very moderate change in the migration rate. The
appearance of these new quasispecies peaks suggests that
migration coupled to mutation can provide a mechanism
for generation and maintenance of genetic diversity.
Figure 2 (left panel) shows that also the dynamics

depends in a nontrivial way on the migration rate. The
time to reach the steady state plotted as a function of k
shows a striking maximum at k0 � 0:0027, suggesting a
critical slowing down and a likely dynamical phase tran-
sition. The approach to the steady state for k � k0 is much
slower than for k � k0. Figure 3 illustrates the underlying
reason for this. Here we plot snapshots of ~n at various
moments in time, for the same parameter set and fitness
landscape, for migration rates below and above k0. For
k � k0, the immigrating population initially has the same
composition as the primary habitat, but later the primary-
habitat quasispecies peak is lost and the system undergoes
a process of jumps between various local fitness maxima
before finally settling in the global optimum. In contrast,

FIG. 1 (color online). Examples of steady-state genotype
abundances in the secondary habitat n�i , for different values of
the migration rate k where p ¼ 0:9, � ¼ 0:01, and M ¼ 128.
These results were obtained by numerical self-consistent solu-
tion of Eqs. (3)–(5). The results agree with direct numerical
solutions of Eqs. (1) and (2). The top left panel shows zero
abundances (n�i ¼ 0) in the absence of migration. The inset
shows the abundances N�

i in the primary habitat (red line).
The top right panel shows the ‘‘native’’ steady state n�i (blue

line), for very small migration rate, as well as the fitness land-
scape �i=100 (black line). The other panels show n�i in the
secondary habitat, for various values of the migration rate k.
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for k � k0, the system rapidly relaxes to a steady state
which overlaps strongly with that of the primary habitat.

Returning to our analytical expressions in the general
case for ~n�, Eqs. (4) and (5), we can estimate the critical
migration rate k0 at which the dynamical phase transition
takes place. Equation (4) expresses ~n� as a sum of eigen-

vectors ~c � for the secondary habitat, weighted by their

overlap with ~N�. When k ! 0, ntot ! �1, and ~n� ! ~c 1.
This is the native quasispecies solution for the secondary
habitat. The phase transition occurs when this solution
becomes dominated by the contributions from the other

terms [� ¼ 2; . . . ;M in Eqs. (4) and (5)], which arise from
overlap with the primary-habitat solutions. This happens at
a migration rate approximately given by

k0 ¼ �1

�XM

�¼2

ð ~c T
� � ~N�Þð ~c T

� � ~eÞ
�1 � ��

��1
: (6)

To show that this result indeed corresponds to the critical
point, we will consider the matrix Jij ¼ Vij � �ijntot � n�i ,
which describes the dynamics of Eq. (2) linearized around
the steady-state solution (4). The equation for the eigen-
values w of Jij may be written as [14]

XM

�¼1

ð ~c T
� � ~N�Þð ~c T

� � ~eÞ
ntot � ��

�
1

�� � ntot � w
� 1

ntot

�
¼ 0: (7)

The relaxation time of the linearized system is given by
1=jw1j where w1 < 0 is the maximum eigenvalue of Jij. In

order to analyze the behavior of w1, we first determine the

behavior of ntot in the limit where � 	 ð ~c T
1 � ~N�Þð ~c T

1 � ~eÞ is
small. Expanding Eq. (5) one obtains that ntot � �1 isOð�Þ
for k < k0,Oð�1=2Þ for k ¼ k0, andOð1Þ for k > k0. We see
that the steady-state properties of the system (e.g., ntot)
behave very differently above and below the transition.
Using the above behaviors of ntot in (7) one finds

w1 ¼ Oð1Þ for k < k0 or k > k0, whereas w1 ¼ Oð�1=2Þ
for k ¼ k0. Thus in the limit ~c T

1
~N� ! 0, i.e., vanishing

overlap between the quasispecies native to both habitats
which is a generic situation for localized eigenvectors on
random fitness landscapes, we have w1 ! 0 at k ¼ k0 and
the relaxation time diverges. Strictly, there is a true phase

transition only in the limit M ! 1, when ~c T
1
~N� ¼ 0, but

the diverging time scale is visible already for quite small
systems, as shown in Fig. 2, right panel. This plot shows
the time T to reach steady state as a function of k=k0, where
k0 is determined from (6). Each of � 20 simulated fitness
landscapes generates a slightly different curve Tðk=k0Þ, but
all of the curves show a steep maximum at k ¼ k0.
For the one-dimensional model considered in our simu-

lations, we can estimate the value of the critical migration

rate k0. The eigenvector equation for ~�� in the primary
habitat maps onto a Schrödinger equation with random
potential Uj ¼ ��j=�:

� ð� ~��Þj þUjð ~��Þj ¼ E�ð ~��Þj; (8)

where E� ¼ ���=�, and likewise for an eigenvector c �

in the secondary habitat. Equation (8) is essentially a 1D
tight-binding electron model [15], in which Uj ¼ �1=�

with probability p and Uj ¼ 0 with probability 1� p.

Localization theory [16] tells us that for this problem the
ground state eigenvector is localized, taking the form
�1;j 
 sinðj�=wÞ on the longest run w of consecutive sites

with Uj ¼ �1=�, and has eigenvalue �1 ’ 1� ��2=w2.

Eigenvectors corresponding to excited states are similarly
localized on other, shorter potential wells. To estimate k0,
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FIG. 2. Numerical results [from Eq. (2), using Eq. (3) for N�
i

and taking the secondary habitat to be initially empty] for
the time T to reach the steady state, starting from Ni ¼ N�

i

and ni ¼ 0. Left panel: T as a function of migration rate k, for
the same system as in Fig. 1. The steady state was assumed to
have been reached when

P
ijniðtþ 1Þ=niðtÞ � 1j=M < 10�10.

Right panel: Tðk=k0Þ, where k0 is determined from Eq. (6), for
M ¼ 64, � ¼ 0:01, p ¼ 0:7, normalized so that Tð10Þ ¼ 1.

Results for 20 representative sets of ~�, ~� are presented on a
log-log plot.
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FIG. 3 (color online). Genetic composition in the secondary
habitat niðtÞ, during the approach to steady state, for the same
system as in Fig. 1, for two migration rates k ¼ 0:0001 (k � k0,
black line, left) and k ¼ 0:003 (k � k0, red line, right, the same
vertical scale), for t ¼ 1; . . . ; 218. The curves were obtained by
solving Eqs. (1) and (2) numerically, taking the secondary
habitat to be empty at t ¼ 0.
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we observe that the largest contribution to the sum in (6)
comes from the eigenvector with the greatest overlap with
~N�, which we denote ~c �. Assuming that ~N� and ~c � are

localized on potential wells of lengthw and v, respectively,

we can estimate that ð ~c T
� � ~N�Þð ~c T

� � ~eÞ 
 v=w. The

lengths w, v are the longest runs ofUj ¼ �1=� in sequen-

ces of independent binary random numbers of length M
and w, respectively; therefore, w ’ lnðMð1� pÞÞ= lnð1=pÞ
and v ’ lnðwð1� pÞÞ= lnð1=pÞ. For large M, v is much
smaller than w, so �1 � �� ’ ��2=v2. Inserting this into

Eq. (6), and setting � ¼ 1� p, we finally obtain

hk0i 
 �w=v3 ’ ��2 lnðM�Þ
ðlnlnM�Þ3 : (9)

Remarkably, this rough estimate agrees up to a factor � 2
with our simulation results. Here we have considered small
�, where multiple fit genomes lie close together in geno-
type space, and we see from (9) that hk0i is much smaller
than � for moderately large M�. This means that even low
rates of migration can dramatically affect evolution in the
secondary habitat [17].

In summary, we have shown that a dynamical phase
transition occurs in a simple model for evolution with
migration between two habitats. Bifurcations caused by
migration have been observed in several models of sexual
populations [3,4] but, to our knowledge, the present work
is the first to consider the effects of migration on the
evolutionary dynamics of asexual organisms from a qua-
sispecies perspective. In our model, at the critical migra-
tion rate, the population in the secondary habitat becomes
dominated by immigrants from the primary habitat. For
subcritical migration rates, our quasispecies model also
reveals that migration can provide a novel mechanism for
creation and maintenance of genetic diversity.

To obtain analytical results and clear insights into the
physics of the model, we have mainly considered a simple
one-dimensional closed-chain representation of the geno-
type space and binary random fitness landscapes. As a step
towards more complex and realistic representations of the
genotype space and fitness landscape, we have also carried
out numerical simulations for a continuous, uniform dis-
tribution of the fitness, as well as a hypercubic mutation
graph. The latter corresponds to single-point mutations in a
sequence of fixed length, with only two symbols allowed.
Our key results (in particular the dynamical phase transi-
tion as a function of migration rate) remain valid in these
cases, suggesting that our findings are likely to be of
general significance, e.g., for sequences composed of 4
(nucleotide) or 20 (aminoacid) symbols. In particular, the
phase transition will occur for any mutation matrix which

allows for localized eigenstates, if the eigenvectors ~�1, ~c 1

in the two habitats do not overlap. It will be interesting to
extend our work to empirical fitness landscapes generated
from experimental data [18], and, inspired by existing

models for sexual organisms [3,4], and recent models in
microbial ecology [19], to multiple connected habitats and
spatially varying environments. Also, as advances in ge-
nomics make it possible to track microevolution of bacteria
[20], we hope that the predictions made in this work will be
verified experimentally, for example, in a system of
coupled chemostats allowing well-controlled migration
between different environments.
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