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We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques

(three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a

function of the electron-phonon coupling strength �, in all models where this coupling depends only on

phonon momentum q. In the SSH model the coupling also depends on the electron momentum k; we find it

has a sharp transition, at a critical coupling strength �c, between states with zero and nonzero momentum

of the ground state. All other properties of the polaron are also singular at � ¼ �c. This result is

representative of all polarons with coupling depending on k and q, and will have important experimental

consequences (e.g., in angle-resolved photoemission spectroscopy and conductivity experiments).
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Polarons have been of broad interest in physics ever
since they were introduced in 1933 to describe dielectric
charge carriers [1]. Apart from their central role in solid-
state physics, with many models now in use [2–4], they
exemplify in quantum field theory the passage from weak
to strong coupling in a nontrivial model of a single particle
coupled to a bosonic field [5]. The first serious nonpertur-
bative studies by Feynman [6] of the Frohlich polaron are
now a classic, but only recently were accurate results
established across the whole range of coupling strengths
[7]. Since then, exact numerical studies have been made of,
e.g., D-dimensional Holstein polarons in various lattice
geometries, with D ¼ 1; 2; 3 [8], of 3D Rashba-Pekar po-
larons with short-range interactions [9], of pseudo Jahn-
Teller polarons [10], and so on.

A central question in this field has been whether a sharp
transition can exist in the polaronic ground state as a
function of the dimensionless effective particle-boson cou-
pling �. In all the above-cited work there is simply a
smooth crossover, expected when the coupling depends
only on the bosonic momentum q; then there must always
be nonzero matrix elements between the ground state and
excited polaron states [11]. However, quite generally, one
expects the coupling to depend on both q and the particle
momentum k, and then much less is known.

In this Letter we study a specific example of this general
case. The particle-boson coupling is taken from the well-
known Su-Schrieffer-Heeger (SSH) model, introduced to
describe electrons in 1D polyacetylene [12]. Here we focus
on the single polaron limit, not the more common case of
half filling, and the bosons are chosen to describe optical
phonons. While this ignores the acoustic phonons which

exist in real materials, it allows a direct comparison with
the large number of results known for models which have a
purely q-dependent coupling. The Hamiltonian thus takes
the simple form H ¼ H0 þ V þHph, where

H0 ¼ �t0
X
i

ðcyi ciþ1 þ H:c:Þ � X
k

�kc
y
k ck (1)

describes the hopping of electrons between sites, with band

dispersion �k ¼ �2t0 cosðkÞ (cyi creates an electron on site

i, cyk creates a momentum state k). The term Hph ¼
!ph

P
ib

y
i bi describes dispersionless phonons (byi creates

a phonon on site i). The interaction is

V ¼ �~�t0
X
i

ðX̂i � X̂iþ1Þðcyi ciþ1 þ H:c:Þ

¼ N�1=2
X
k;q

Mðk; qÞcykþqckðby�q þ bqÞ; (2)

with site displacements X̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2M!ph

q
ðbi þ byi Þ, and an

interaction vertex

Mðk; qÞ ¼ 2i�½sinðkþ qÞ � sinðkÞ�
¼ ið2�!pht0Þ1=2½sinðkþ qÞ � sinðkÞ�: (3)

This interaction, with associated energy � ¼ ~�t0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2M!ph

q
, describes the modulation of the hopping am-

plitude by phonons. We henceforth set t0 ¼ 1, and define
two dimensionless parameters: the electron-phonon cou-
pling parameter � ¼ 2�2=ðt0!phÞ ¼ hjMðk; qÞj2i=
ð2t0!phÞ, where h�i averages over the Brillouin zone, and

the ‘‘adiabaticity’’ ratio !ph=t0 ( � !ph when t0 ¼ 1).
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Results.—We treat this nonperturbative problem with
the momentum average (MA) analytical approximation
[13–15] and three different numerical techniques: the dia-
grammatic Monte Carlo (DMC) [7], the limited phonon
basis exact diagonalization (LPBED) [16], and the bold
diagrammatic Monte Carlo (BDMC) [17] methods.
Applications of the first three methods to polaron problems
are well documented. However, our implementation of the
BDMC method for the SSH model contains several new
elements, reviewed in the supplementary material [18].

In the following we display results as functions of � in
both the adiabatic regime (choosing !ph ¼ 0:5) and the

nonadiabatic regime (choosing !ph ¼ 3:0). We begin with

the quasiparticle dispersion EðkÞ and renormalization fac-
tor ZðkÞ [Figs. 1(a)–1(d)]. One sees immediately that what-
ever the adiabaticity, the minimum of EðkÞ is at k ¼ 0 for
small � but at finite k for large �. At first glance, never-
theless, nothing unusual seems to happen to the ground
state energy EGSð�Þ at the critical value �c, where kGS first
becomes nonzero [Fig. 1(e)]. In fact, the curves in Fig. 1(e)
look quite similar to those for Holstein polarons.

However, there is actually a singularity at �c. Plots of
the dimensionless derivative dEGSð�Þ=d� [Fig. 2(a)],
the overlap ZGSð�Þ between the ground state at finite �
and the uncoupled ground state [Fig. 2(b)], the momentum

kGSð�Þ for which EðkÞ is minimized [Fig. 2(c)], and the
renormalized effective polaron mass m�ð�Þ ¼ ½@2Eð�Þ=
@k2��1jk¼kGS [Fig. 2(d)] all show a sharp transition at � ¼
�cð!phÞ (see Fig. 2 for !ph ¼ 0:5, Fig. 3 for !ph ¼ 3). At

this singularity, the polaronic mass m�ð�Þ diverges, with
corresponding jumps in the first derivatives dkGSð�Þ=d�
and dZGSð�Þ=d�, and in d2EGSð�Þ=d�2. However, the
average number of phonons Nphð�Þ in the polaronic

FIG. 1 (color online). The polaron dispersion relation EðkÞ �
Eðk ¼ 0Þ is shown in (a),(c), and the GS Z factors ZðkÞ at
momentum k are shown in (b),(d). Red triangles (blue circles)
correspond to LPBED (BDMC) methods. In (a),(b), where
!ph ¼ 0:5, � ¼ 0:25; 0:5; 1:0; 1:094; 1:21; 1:96 (from top to bot-

tom). In (c),(d), where!ph ¼ 3, � ¼ 0:25; 0:5; 1:0; 2:0; 4:0 (from

top to bottom). MA results are shown as green solid curves.
In (e) the GS energy for !ph ¼ 0:5 (upper line) and !ph ¼ 3

(lower curve) is shown; triangles, rhombi, squares, and circles
correspond to LPBED, MA, DMC, and BDMC methods, re-
spectively.

FIG. 2 (color online). (a) Derivative of the GS energy with
respect to �, (b) Z factor of the GS, (c) wave vector of the GS,
and (d) the ratio m0=m

� of the bare and effective polaronic
masses at kGS for !ph ¼ 0:5 (here m0 ¼ 1=2t0). Red triangles,

green rhombi, black squares, and blue circles correspond to
LPBED, MA, DMC, and BDMC methods, respectively.
The vertical dashed line indicates the critical coupling �c.

FIG. 3 (color online). The same as Fig. 2 but for !ph ¼ 3. MA
results in (b),(c) are shown as green solid lines.
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polarization cloud does not diverge at �c (although it is
presumably still singular); Nphð�cÞ< 15 for all values of

the adiabaticity parameter !ph checked so far. Note also

how �c varies with !ph (Fig. 4), initially increasing for

small !ph, but then falling to the asymptotic value �c !
1=2 in the instantaneous phonon limit!ph ! 1. This limit

can be derived analytically (see below).
We emphasize here the remarkable agreement obtained

between all 4 methods. The three numerical techniques are
in principle exact, but all have their practical limitations,
such as the sign problem noted below for QMC methods.

Discussion.—The key new feature of couplings Mðk; qÞ
like that in Eqs. (2) and (3), compared to k-independent
couplings, is that they are nondiagonal in site index. Thus
phonons cause the bandwidth to fluctuate, and can by
themselves generate hopping between sites. The lowest-
order process contributing to EGS is 2nd order in Mðk; qÞ,
higher corrections come from even powers ofM. The same
applies to the polaron self-energy, the polaron mass, qua-
siparticle renormalization, etc. Consider now a pair of
vertices, connected by a phonon of momentum q; we have

Mk;�qMk0�q;q / �sin2
�
q

2

�
cos

�
k� q

2

�
cos

�
k0 � q

2

�
: (4)

Three key new features appear in (4).
(a) It can be of either sign when k � k0. This leads to a

’’sign problem’’ in any Monte Carlo calculation (indeed,
for any interaction Mðk; qÞ with nondefinite sign); we
discuss this in the supplementary material [18]. The SSH
model is thus representative of a large class of models in
which nondiagonal couplings give a sign problem.

(b) Multisite hopping terms involving phonons generate
terms in the polaron dispersion of the form EðkÞ ¼ E0 �
2t�1 cosk� 2t�2 cosð2kÞ � � � � . Now for q-only dependent
couplings, the nearest-neighbor hopping t�1 � t0 is exponen-

tially suppressed, and t�2 � t2
0

!ph
e�4�t=!ph [19] is doubly

suppressed because each requires an intersite polaron cloud

overlap. Here, however, an electron can hop from i� 1 !
i ! iþ 1, using only V, to first create and then remove a
phonon at site i. The associated energy is t�2 /
�ti;iþ1�ti;i�1=!phwhere�ti;i�1 � � is the phonon-induced

change in the hopping. Since the phonon-induced displace-

ment X̂i increases one bond length while decreasing the
other, �ti;iþ1�ti;i�1 < 0, i.e., t�2 / ��2=!ph is negative,

favoring a minimum in EðkÞ � �2t�2 cosð2kÞ at k ¼ �=2,
consistent with our results for large �. This simple analysis
indicates how the transition can occur. Of course, higher
order terms must also be considered, and a transition like
this, signaled by the change in kGS, is certainly not guaran-
teed for all k-q-dependent couplings (thus the Edwards
model in the large � limit also has a dominant t�2 term of
similar origin, but t�2 > 0, and kGS ¼ 0 for all � [15]).
(c) Finally, consider the limit !ph ! 1 for a fixed �; t0.

The phonon propagator tends to its static limit: Dðq;!Þ ¼
�2!ph=ð!2

ph �!2Þ ! ~D ¼ �2=!ph. The polaron propa-

gator is then dominated by the 2nd-order correction in V,
scaling like �2=!ph � �t0 [higher order corrections

��2n=!n�1
ph � t0�

n�1ð t0
!ph

Þn�1 ! 0]. Thus, to lowest order

in !�1
ph we get from Eq. (4) that

EðkÞ ¼ �2t0 coskþ 1

2N1=2
~D
X
q

jMðk; qÞj2

¼ �2t0 cosk� 2�t0ffiffiffiffi
N

p X
q

½sinðkþ qÞ � sink�2: (5)

We see that the dispersion curvature ½d2EðkÞ=dk2�k¼0 ¼
4t0ð1=2� �Þ at k ¼ 0. Thus, in the large !ph limit, the

effective mass diverges for �cð!ph ! 1Þ ¼ 1=2. Figure 4

shows it converges very slowly to this limit.
This discussion shows, at least for sufficiently large!ph,

that there must be a critical coupling strength �c at which
kGS leaves zero. For small !ph the existence of a critical

point is less clear because the higher order diagrams can
have arbitrary sign, but it is what we find here for all !ph

studied [20]. Note, however, that for!ph < 0:3 the average

number of phonons Nph increases significantly, making

numerical simulations very difficult. The MA method is
also questionable in this limit.
One is tempted to call this T ¼ 0 transition a ‘‘quantum

phase transition.’’ However this is not correct, because any
phase transition must involve the cooperative behavior of
an infinite set of degrees of freedom, but here the number
of phonons Nph in the polaronic cloud always remains

small. Of course with a macroscopic number of polarons
in the system, we would see nonanalyticity in bulk prop-
erties like dEGSð�Þ=d�, but a small number of polarons
will be invisible in any thermodynamic property. Thus we
simply assert the existence of a nonanalyticity, as a func-
tion of �, in the polaronic properties.

FIG. 4 (color online). Phase boundary dividing GSs with zero
and nonzero momentum. Green squares and red triangles refer to
MA and LPBED methods. The horizontal dotted line refers to
the instantaneous limit �

!ph!1
c ¼ 1=2.
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We see that polarons having a coupling to a bosonic field
depending on both k and q behave in a fundamentally
different way from the standard case with only
q-dependent coupling. This suggests a large zoology of
so far unexplored behavior in many physically relevant
systems. Note how surprisingly different the polaronic
properties are here. For example, for large �, m�ð�Þ
decreases and ZðkGSÞ remains quite large. We see that
‘‘standard polaronic behavior’’ is really just a feature of
models like the Holstein and Frohlich model.

Experimental signatures of the new behavior—notably,
the critical point—will clearly be invisible in any thermo-
dynamic measurements. However, the divergence of the
effective mass should be easily detectable in transport
measurements; the polaron mobility �� 1=m� goes to
zero at the critical point. Thus in any system where the
charge mobility is carried by the polarons, this critical
point should be very obvious. It would also be interesting
to do angle-resolved photoemission spectroscopy experi-
ments [21], where polarons can be ejected directly from the
insulating state, allowing direct measurement of EðkÞ and
ZðkÞ. Apart from polyacetylene, various organic semicon-
ductors are known to have important nondiagonal coupling
to phonons [22], as do several dimerized Mott magnetic
semiconducting oxides [23]; in some of these, the coupling
can be varied somewhat by pressure. However, any
quantitative theory for such experiments must also include
the coupling to longitudinal phonons, electron-electron
interactions, and interchain coupling.
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