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We theoretically investigate the spin dynamics of a heavy hole confined to an unstrained III-V

semiconductor quantum dot and interacting with a narrowed nuclear-spin bath. We show that band

hybridization leads to an exponential decay of hole-spin superpositions due to hyperfine-mediated nuclear

pair flips, and that the accordant single-hole-spin decoherence time T2 can be tuned over many orders of

magnitude by changing external parameters. In particular, we show that, under experimentally accessible

conditions, it is possible to suppress hyperfine-mediated nuclear-pair-flip processes so strongly that hole-

spin quantum dots may be operated beyond the ‘‘ultimate limitation’’ set by the hyperfine interaction

which is present in other spin-qubit candidate systems.
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Heavy holes (HHs) confined to semiconductor quantum
dots (QDs) have attracted rapidly growing attention over
the last few years for their potential applicability in spin-
tronics and as qubits for quantum information processing
devices. The spin states of confined HHs feature very long
spin relaxation times [1] and are suspected to be robust
against spin decoherence. Typically, for spin qubits oper-
ated at sub-Kelvin temperatures, the main source of deco-
herence is the interaction with the nuclear spins residing in
the host material and the inhomogeneous broadening of the
nuclear magnetic field (Overhauser field) [2]. For HHs, the
form of the nuclear-spin interaction is predominantly
Ising-like [3], in contrast to the Heisenberg-type interac-
tion of electrons. Hole-spin QDs in p-type GaAs=AlGaAs
heterostructures have already been realized experimentally
and operated in the few-hole regime [4–6]. Experiments
in self-assembled InGaAs quantum dots have shown the
possibility to initialize and read out the spin state of a HH
with high fidelity [7], and ensemble-spin decoherence
times T�

2 on the order of hundreds of nanoseconds have
been measured [8].

Several possibilities to suppress decoherence due to
inhomogeneous broadening have been proposed, one of
which is to prepare the nuclear spins in a so-called nar-
rowed or frequency-focused state [9–11], where the bath is
prepared in an eigenstate of the Overhauser operator [see
text below Eq. (6)]. On the experimental side, enormous
progress has been achieved in preparing such narrowed
states [12,13], which have been shown to persist over
astonishingly long time scales exceeding hours [13]. For
electrons interacting with a narrowed nuclear bath, spin
decoherence happens due to nuclear-pair-flip processes
induced by the transverse hyperfine interaction, and the
associated single-spin decoherence time T2 can be several
orders of magnitude longer than the ensemble-spin deco-
herence time T�

2 [14]. For HHs, with their predominantly
Ising-like coupling to nuclear spins [3], this transverse

interaction (perpendicular to the Ising axis) can be ex-
pected to be very small, potentially leading to very long
single-hole-spin decoherence times T2.
In this Letter, we study the spin dynamics of a HH

confined to a III-V semiconductor QD and interacting
with a narrowed nuclear-spin bath. We show that band
hybridization leads to non-Ising (transverse) terms in the
hyperfine Hamiltonian, whose magnitude depends on the
geometry of the QD. This transverse coupling induces
nuclear pair-flip processes, leading to fluctuations of the
Overhauser field and to exponential single-hole-spin deco-
herence. We show that for typical unstrained quantum dots
the associated time scale T2 has a lower bound on the order
of tens of microseconds and that it can be tuned over many
orders of magnitude by changing external parameters such
as the applied magnetic field. Thus, it is in principle
possible to operate hole-spin QDs in a regime where the
hyperfine interaction is practically switched off and where
other decoherence mechanisms, such as nuclear dipole or
spin-orbit interactions, will become relevant and, hence,
experimentally observable.
We start from the 8� 8 Kane Hamiltonian describing

states in the conduction band (CB), heavy-hole (HH), light-
hole (LH) and split-off (SO) bands of bulk III-V semi-
conductors (see Appendix C of Ref. [15]). The Kane
Hamiltonian can be ‘‘folded down’’ to an effective 2� 2
Hamiltonian whose eigenstates describe the spin states in
the band of interest, where the admixture of neighboring
bands is taken into account perturbatively [15]. Using this
procedure, we find the following hybridized HH pseudo-
spin states [16]:

j��i ’ N ðju�HH;�00
HHij�HHi � �CBju�CB;�0�

CBij�CBi
� �LHju�LH;�1�

LHij�LHiÞ: (1)

Here, we have assumed a parabolic confinement potential
defining a QD with lateral and perpendicular confinement

PRL 105, 266603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

0031-9007=10=105(26)=266603(4) 266603-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.266603


lengths L and az, respectively, and N enforces proper
normalization of the wave functions. The condition for the
validity of Eq. (1) is given by az � L, which is needed
for the perturbation expansion on the Kane Hamiltonian.
The amount of CB and LH admixture is determined by

�CB ¼ i�CBP=
ffiffiffi
2

p
LEg and �LH ¼ ffiffiffi

3
p

�LH�3azL=2
ffiffiffi
2

p
�2

ðL2 � a2zÞ, respectively, where P is the interband momen-
tum, Eg is the band gap, �2;3 are Luttinger parameters, and

�CB, �LH account for the difference in effective masses
between the bands [16].

Near the � point, the spin-orbit-coupled states can be
approximated by ju�CBij�CBi ’ jsij "; #i, ju�HHij�HHi ’
jp�ij "; #i, ju�LHij�LHi ’ ð ffiffiffi

2
p jpzij "; #i � jp�ij #; "iÞ=

ffiffiffi
3

p
,

in terms of s- and p-symmetric Bloch states (jp�i ¼
jpxi � ijpyi) and real-spin states j "; #i with respect to the

growth axis [15]. The envelope functions appearing in
Eq. (1) are defined via their position representations

hrj�ij
�i ¼ �i?

� ðzÞ�jk
� ðx; yÞ (i ¼ 0, 1, j ¼ 0, �), where

�0k
� ðx; yÞ ¼ �0

�ðxÞ�0
�ðyÞ, ��k

� ðx; yÞ ¼ ½�1
�ðxÞ�0

�ðyÞ�
i�0

�ðxÞ�1
�ðyÞ�=

ffiffiffi
2

p
, and �n

�ðxÞ is the nth harmonic-
oscillator eigenfunction in band �. Because of terms
appearing in the Kane Hamiltonian which are linear in
the crystal momentum k and which couple neighboring
bands, the admixture of CB and LH states features excited-
state envelope functions. This has profound physical
consequences which will be discussed below. The split-
off-band contribution to the HH states is very small and has
thus been neglected in Eq. (1).

There are three interactions that couple an electron
(or HH) to the spins of the surrounding nuclei: the Fermi
contact interaction hk1, the anisotropic hyperfine interaction
hk2, and the coupling of orbital angular momentum to the
nuclear spins hk3, which read (setting @ ¼ 1) [17]:

hk1 ¼
�0

4�

8�

3
�S�jk�ðrkÞ~S � Ik; (2)

hk2 ¼
�0

4�
�S�jk

3ðnk � ~SÞðnk � IkÞ � ~S � Ik
r3kð1þ d=rkÞ

; (3)

hk3 ¼
�0

4�
�S�jk

Lk � Ik
r3kð1þ d=rkÞ

: (4)

Here, �S ¼ 2�B, �jk ¼ gjk�N , �B is the Bohr magneton,

gjk is the nuclear g factor of isotopic species jk at lattice

site k, �N is the nuclear magneton, rk ¼ r�Rk is the
electron-spin position operator relative to the kth nucleus
with spin Ik, d ’ Z� 1:5� 10�15 m, Z is the charge of

the nucleus, and nk ¼ rk=rk. ~S and Lk ¼ rk � p denote
the spin (m~S ¼ �1=2) and orbital angular-momentum
operators of the electron, respectively.

In order to derive an effective spin Hamiltonian for the
HH, we take matrix elements h�	jhk1 þ hk2 þ hk3j�	0 i ¼
H		0 (	, 	

0 ¼ �) with respect to the hybridized HH wave
functions (1). Because of the � function in Eq. (2), only the

CB admixture contributes to the Fermi contact interaction,
since p states vanish at the positions Rk of the nuclei. On
the other hand, the terms in Eq. (1) associated with HH and
LH states contribute to matrix elements of Eqs. (3) and (4),
while the CB admixture does not contribute due to sym-
metry (hk2) and vanishing orbital angular momentum (hk3).
Adding up all contributions, and taking into account a
Zeeman term due to a magnetic field B along the z direc-
tion, we find the following effective spin Hamiltonian
describing the hole-nuclear-spin interactions:

H ¼ ðbþ hzÞSz þ 1

2
ðhþS� þ h�SþÞ: (5)

Here, b ¼ gh�BB is the Zeeman energy of the HH, gh ’ 2
is the HH g factor along the magnetic-field direction z, �B

is the Bohr magneton, and S is the HH pseudospin-1=2
operator. The Overhauser-field components are defined by
hz ¼ P

kA
z
kI

z
k and h� ¼ P

kA
�
k I

�
k (I�k ¼ Ixk � iIyk), where

Az
k and A

�
k denote the longitudinal and transverse hyperfine

coupling of the HH to the kth nuclear spin, respectively.
The flip-flop terms in Eq. (5) couple the HH pseudospin
(� 3=2) states through admixture with CB and LH
pseudospin (� 1=2) states, such that flip-flop processes
with I ¼ 1=2 nuclear spins preserve the total angular
momentum.
The hybridized states in Eq. (1) are predominantly HH-

like. In Ref. [3] it has been shown that taking matrix
elements of the Hamiltonians (2)–(4) with respect to pure
HH states (i.e., neglecting band hybridization) results in an
Ising Hamiltonian hzSz. The longitudinal coupling con-
stants are thus dominated by the HH contribution, Az

k ’
Az
k;HH, and the transverse (non-Ising) terms in Eq. (5) are

only due to hybridization with CB and LH states, A�
k ¼

A�
k;CB þ A�

k;LH. Explicitly, the longitudinal and transverse

coupling constants are given by Az
k;HH ’ Ajk

HHv0j�0ðzkÞj2
j�0ðxk; ykÞj2, A�

k;CB’Ajk
CBv0j�0ðzkÞj2���ðxk;ykÞ��ðxk;ykÞ,

and A�
k;LH ’ Ajk

LHv0j�1ðzkÞj2���ðxk; ykÞ��ðxk; ykÞ, respec-
tively, where v0 is the volume occupied by one nucleus

and Ajk
� is the hyperfine coupling strength of isotope jk

associated with band �. Introducing the average A� ¼P
j
jA

j
�, where 
j denotes the abundance of isotope j,

we estimate AHH ’ �13 �eV [3], ACB ’ 0:15 �eV, and
ALH ’ 0:05 �eV for a GaAs QD with L ¼ 10 nm and
az ¼ 2 nm. In contrast to the interaction of an electron
with nuclear spins, the hole-nuclear-spin interaction given
in Eq. (5) is highly anisotropic.
We now study the dynamics of the transverse spin

component Sþ describing the coherence of the HH pseu-
dospin states. To this end, we use the Nakajima-Zwanzig
master equation [9]

h _Sþit ¼ i!nhSþit � i
Z t

0
dt0�ðt� t0ÞhSþit0 ; (6)

where ! ¼ bþ hz, !jni ¼ !njni, and jni denotes a nar-
rowed state of the nuclear-spin system (note that for a
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non-narrowed bath, the HH decoherence would be domi-
nated by the Ising part of Eq. (5), as shown in Ref. [3]).

�ðtÞ ¼ trfSþ�̂ðtÞS�jnihnjg is the self-energy (or memory
kernel) describing the transverse-spin dynamics, where

�̂ðtÞ ¼ �iPLQeiLQtQLP, P is a projector onto a product
state of HH and nuclear spins, Q ¼ 1� P, and LO ¼
½H;O� for some operator O acting on the total Hilbert
space of HH and nuclear spins [9]. It is convenient to
perform a Laplace transform on Eq. (6), yielding an alge-
braic equation of the form

Sþðsþ i!nÞ ¼ hSþi0
sþ i�ðsþ i!nÞ (7)

in the frame rotating with frequency !n. Equations (6) and
(7) are exact equations describing, in general, non-
Markovian dynamics of the transverse HH-spin compo-
nent. The structure of the self-energy �ðsÞ is, however,
very complex, so we have to resort to an approximation
scheme. The energy scales associated with the transverse
coupling V ¼ ðhþS� þ h�SþÞ=2 are much smaller
than those associated with the longitudinal coupling H0 ¼
ðbþ hzÞSz (see above), and we expand the self-energy in
powers of hole-nuclear-spin flip-flop processes induced by

V: �ðsÞ ¼ �ð2ÞðsÞ þ �ð4ÞðsÞ þOðV6Þ. Odd orders in V
vanish because of the Zeeman mismatch between HH
and nuclear spins which energetically forbids such pro-
cesses. For a nuclear spin I of order unity, the smallness
parameter which controls this expansion is given approxi-
mately by A?=!n (see Appendix A of Ref. [9]), where

A? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
CB þ A2

LH

q
.

We evaluate the second- and fourth-order self-energy
contributions explicitly, following the procedure described
in Ref. [18]. We find, for a homonuclear system in the
frame rotating with frequency !n,

�ð2Þðsþ i!nÞ ’ � cþ þ c�
4!n

X
k

jA�
k j2; (8)

�ð4Þðsþ i!nÞ ’ �i
cþc�
4!2

n

X
k1;k2

jA�
k1
j2jA�

k2
j2

sþ iðAz
k1
� Az

k2
Þ ; (9)

where the sums run over all nuclear sites k. We have
introduced c� ¼ IðI þ 1Þ � hhmðm� 1Þii, where I is the
nuclear spin, m ¼ �I; . . . ; I, and the double angle bracket
indicates averaging over the Izk eigenvalues m [9].

We emphasize that the structure of the self-energies �ð2Þ

and �ð4Þ bears some similarity with previous results on
electron-spin decoherence [18]. However, there are two
important differences compared to the electron case:
(i) The appearance of different coupling constants Az

k and

A�
k in Eqs. (8) and (9) is due to the anisotropy of the

hyperfine Hamiltonian (5) and provides an additional
smallness factor A?=Az � 1 (Az ¼ jAHHj) to the self-
energy (11); (ii) the spatial dependence of the transverse
coupling constants differs from the longitudinal ones due

to the appearance of excited-state envelope functions.
In particular, this means that nuclear spins at the edge of
the QD (rather than in its center as in the electron case)
couple most strongly to the HH along the transverse
direction—an effect which manifests itself directly in the
appearance of a distinct minimum in the decoherence rate
1=T2 (see Fig. 1).
We now evaluate the second- and fourth-order self-

energy in the continuum limit (changing sums to integrals
[16]), following Ref. [18]. Since az � L (see above), we
can perform a two-dimensional limit by averaging over
the z dependence in the hyperfine coupling constants Az

k

and A�
k . From Eq. (8), we see that the second-order self-

energy �ð2Þ is purely real, leading to no decay but a

frequency shift �! ¼ �Re�ð2Þðsþ i!nÞ, or

�! ¼ cþ þ c�
16N

A2
?

!n

; (10)

where N is the number of nuclear spins enclosed by the
envelope function. The fourth-order self-energy becomes

�ð4Þðsþ i!nÞ ’ �i
cþc�
4N

A?
Az

A3
?

!2
n

�
Z 1

0
dx

Z 1

0
dy

xðlogxÞ2yðlogyÞ2
sþ iðx� yÞ (11)

in the continuum limit, where x ¼ expf�r21g, y ¼
expf�r22g, and ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
=L (i ¼ 1, 2). Here, we

have approximated jA�
k j2 ’ jA�

k;CBj2 þ jA�
k;LHj2 since the

overlap term vanishes under spatial averaging. The appear-
ance of polynomial prefactors r4, represented by the log
functions in the numerator of Eq. (11), is a direct conse-
quence of the excited-state envelope functions describing
the distribution of transverse coupling constants A�

k within

the quantum dot.
The transverse-spin dynamics of the HH are described

by the nonanalytic structure of the right-hand side of

FIG. 1 (color online). Decoherence rate 1=T2 from Eq. (12) as
a function of the HH Zeeman energy !n ¼ gh�BBþ pIAHH.
For L ¼ 10 nm and az ¼ 4 nm, we estimate N ’ 7:3� 104.
Inset: 1=T2 for fields up to 1 T (axes in the same units as in
the main figure).
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Eq. (7) (see, e.g., Ref. [18]). Inserting �ð2Þ and �ð4Þ into
Eq. (7), we find one pole at s ’ i�!� �, whose negative

real part gives the HH decoherence rate � ¼ 1=T2 ’
�Im�ð4Þði!n þ i�!� 0þÞ [18], where 0þ denotes a posi-
tive infinitesimal. Evaluating Eq. (11), we find [16]

1

T2

¼ �cþc�
4N

A?
Az

A3
?

!2
n

Z 1

�
dxx½logx�2ðxþ �Þ½logðxþ �Þ�2;

(12)

where � ¼ Nj�!=AHHj. The integral in Eq. (12) can now
be evaluated numerically for any value of �.

The Zeeman energy of the HH is given by !n ¼
gh�BBþ pIAHH, where �1 	 p 	 1 is the degree of
nuclear-spin polarization (along the positive z direction).
In Fig. 1, we show the hole-spin decoherence rate 1=T2 as a
function of !n. The nonmonotonic behavior of 1=T2 for
small !n appears when � / 1=!n approaches unity.

For electrons, a nonmonotonic behavior of 1=T2 has
been predicted as well [18], albeit with a different depen-
dence on � and around magnetic fields of several Tesla. In
contrast, for holes, the nonmonotonicity occurs at much
lower fields (B ’ 0:1 mT for the parameters used in Fig. 1
assuming p ¼ 0), and the rate 1=T2 features an additional
dip which is a footprint of the excited-state envelope
functions appearing in Eq. (1). The huge difference in
energy scales has very important consequences for the
tunability of the hole-spin decoherence rate: by increasing
the externally applied magnetic field (or the degree of
nuclear-spin polarization), it is possible to decrease 1=T2

over many orders of magnitude within the experimentally
accessible range of magnetic fields (see inset of Fig. 1).
This means that this system offers the possibility to entirely
‘‘turn off’’ hyperfine-associated spin decoherence. As a
consequence, hole-spin quantum dots may be operated in
a regime where other interactions, such as spin-orbit or
direct nuclear dipole interactions, will be the dominant
source of spin decoherence and will therefore become

experimentally observable. On the other hand, for small
!n, the hybridization-induced transverse interaction can be
expected to be the dominant source of hole-spin decoher-
ence. We emphasize that Eq. (12) is still valid at B ¼ 0, as
long as � < 1. For � > 1, �! exceeds the bandwidth of
excitations Az=N in the nuclear bath, and the perturbation
expansion breaks down [18].
The degree of band hybridization, and therefore the

decoherence rate 1=T2, depends on the geometry of the
QD, i.e., on L and az. For flat QDs the amount of LH
admixture to the HH states (1) is decreased, leading to
smaller non-Ising terms in the Hamiltonian (5). On the
other hand, the envelope wave function of a flat dot en-
closes less nuclear spins (for fixed L). These two effects
lead to an increase of the maximal decoherence rate for
smaller az (see Fig. 2), and a shift of its position as a
function of !n (see inset of Fig. 2).
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