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Role of Polaron Pair Diffusion and Surface Losses in Organic Semiconductor Devices
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By applying Monte Carlo simulations we find that the extraction of bound polaron pairs (PP) at the
electrodes is an important loss factor limiting the efficiency of organic optoelectronic and photovoltaic
devices. Based upon this finding, we develop a unified analytic model consisting of exact Onsager theory
describing the dissociation of PP in organic donor-acceptor heterojunctions, the Sokel-Hughes model for
the extraction of free polarons at the electrodes, as well as of PP diffusion leading to the aforementioned
loss mechanism, which was not considered previously. Our approach allows us to describe the simulation
details on a macroscopic scale and to gain fundamental insights, which is important in view of developing

an optimized photovoltaic device configuration.
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In solar cells based on polymer-fullerene bulk hetero-
junctions (BHJ) primary molecular excitations, also called
excitons, are generated by light absorption. The photogen-
erated excitons diffuse by emission and reabsorption to
donor-acceptor interfaces [1]. There, the excitations may
undergo charge transfer from the excited donor molecules
to the nearby acceptors [2,3]. The resulting charge transfer
states are also called polaron pairs (PP) and, unlike bipolar-
ons, consist of oppositely charged constituents. They may
dissociate into free polarons which can be extracted from
the device to generate a net photocurrent [4]. In organic
solar cells the net photocurrent is crucially determined by
the PP dissociation and extraction yields, currently leading
to overall power conversion efficiencies of up to 8% [5].

It is commonly implied that PP either recombine or
dissociate at the place of their creation, as their diffusion
is not accounted for in theoretical models [6—8]. However,
it is known from experiments that photogenerated charges
have very high initial mobilities [9], and there are indica-
tions that photogenerated charges can move to different
molecules or conjugation segments before they recombine
or dissociate [10]. In this Letter the diffusion of Coulomb
bound PP resulting in an important loss mechanism
in organic BHJ solar cells is considered. We perform
Monte Carlo simulations of PP recombination and photo-
current extraction in BHJ, focusing on PP diffusion and
the resulting losses at the electrodes. We find that without
blocking layers, over 40% of the generated charges can get
lost at the electrodes and that, for high electric fields, the
PP loss mechanism becomes dominant. Such high surface
loss cannot be explained by the theories commonly used.
Our simulations show that PP diffusion is responsible, as it
can increase extraction of both (bound) charges at the same
electrode. Upon this finding we present a unified analytic
model to calculate the photocurrent yield, accounting for
PP diffusion and losses at the surface.

In our Monte Carlo simulations we describe the organic
blend of P3HT [poly(3-hexyl thiophene)] and PCBM
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([6,6]-phenyl-Cg; butyric acid methyl ester), a widely
studied representative of polymer-fullerene semiconduc-
tors, on a mesoscopic scale [11]. Therefore, electron donor
and acceptor molecules were distributed in a volume ratio
of 1:1 within a 100 X 25 X 25 cubic lattice with constant
spacing of 1 nm, sandwiched between electrodes on the
long lattice side and periodic boundary conditions for the
other directions. Each acceptor molecule was assigned to
a single cubic lattice site, in accordance with the spherical
shape of fullerenes. However, as conjugated polymers
consist of several monomer units and are known to have
an effective conjugation length (CL), a donor molecule was
spanned over multiple lattice points [11].

Charge transport was described by the Miller-Abrahams
[12,13] rate equation, also accounting for charge carrier
Coulomb interaction as well as mirror charge effects.
Miller-Abrahams theory was used as it neglects all polaronic
effects and thus qualitatively better accounts for PP excess
energy, which is initially (over-)compensating molecular
reorganization energies in, e.g., classical Marcus theory. In
order to include energetic disorder, the energy levels, corre-
sponding to the respective molecular orbitals, were taken
from Gaussian distribution functions according to our ex-
perimental findings, with standard deviation o, = 60 meV
for acceptor molecules and o, =75meV for donors [11].
The PP lifetime was set to T.;=10"7s [11,14,15].
At simulation initialization, one polaron pair was set at a
randomly chosen donor-acceptor interface, which corre-
sponds to a PP density of npp = 1.6 X 10'® cm™3. To gain
statistically reliable results, 2.5 X 10° simulations were
performed for each parameter set.

A crucial step during the photocurrent generation is the
PP dissociation yield, p;,. We point out that p;, corre-
sponds to internal polaron pair dissociation, where surface
effects and losses are neglected. We considered it in our
former work [11], in which charge carrier delocalization,
implying high local mobilities, was found to be a key
parameter for achieving high p;,. In this Letter, we
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FIG. 1 (color online). Probability of surface losses vs electric
field found by Monte Carlo simulation of 1:1 donor-acceptor
blends at 300 K with 7.4 = 100 ns (device length / = 100 nm,
dielectric constant € = 3.0). (a) Absolute probability for surface
loss (pross) 18 significant at low fields and for long donor con-
jugation lengths (CL). (b) py relative to the sum of all losses—
in the bulk (p,..) and at the surface—becomes the dominant loss
mechanism for increasing CL and increasing field.

consider losses at the electrodes, and therefore define the
charge extraction yield, p., which is a measure for the
photocurrent. We show that by increasing CL, the proba-
bility for losing charges at the electrodes, pj, = Pint —
Pext> Increases [Fig. 1(a)]. Even more, the fraction of losses
at the surface pj. becomes dominant for CL = 10 over
all electric fields, as compared to the sum of all bulk
(prec = 1 — piny) and surface loss mechanism.

Investigating this significant surface loss mechanism in
detail showed that the PPs do not necessarily dissociate or
recombine at the place of their creation. Because of their
strong mutual Coulomb binding, the generated polaron
pairs diffuse as neutral quasiparticles within their lifetimes
along the distributed donor-acceptor interfaces. To illus-
trate this effect, the diffusion of external field stabilized
PPs in direction of that external field of 3 X 10° V/m is
shown in Fig. 2 exemplarily for CL = 6. The graph shows
the fraction of PP vs their diffusion length before recom-
bination occurs. Only around a tenth of the PP does not
diffuse, as indicated by the peak of the probability distri-
bution. For longer CL, the PP diffusion length increases,
whereas higher external fields reduce the PP bulk recom-
bination in general (not shown). Thus, the surface loss of
PP increases at the same time as bulk recombination p,..
reduces with increasing CL [11].

As the diffusion lengths distribution was averaged over
more than 10° simulations, the discrete random-walk dif-
fusion process of the simulation was approximated by a
continuous-time stochastic Wiener process, also known as
Brownian motion. For PP, decaying exponentially with
Toff, the probability to diffuse for the distance x is given as
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FIG. 2 (color online). Probability distribution pp,,, of polaron
pair diffusion lengths from Monte Carlo simulation (circles) of a
1:1 donor-acceptor blend at 300 K with 7.4 = 100 ns (device
length / = 100 nm, dielectric constant € = 3.0). The dashed
lines indicate the fitted contributions of the two identified
diffusion processes, with diffusion lengths of 2 respectively,
9 nm, the solid line representing the sum of both.
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Thereby, Dpp is the PP diffusion constant, which relates
to the characteristic diffusion length /; of the process as
lg = /DppTegs-

We find that the simulated distribution can be expressed
well as the combination of two diffusion processes of differ-
ent Dpp, as shown in Fig. 2. For the given parameters, 40%
of the PP hardly diffuse and recombine within a distance of
l; = 2 nm. The other 60% diffuse for /; = 9 nm, in total
corresponding to 12% surface loss due to PP diffusion
(device length 100 nm). For thinner devices, the relative
losses are even more significant (not shown). We assume
that the two diffusion processes found are related to the
energetic relaxation of charge carriers in the initially
equally occupied density of acceptor or donor states.

To study these high surface losses found in our simula-
tions in more detail, and to identify the essential contrib-
uting processes, we included the PP diffusion into an
analytic model.

Our approach is shown schematically in Fig. 3 and is as
follows: Starting from the created PP, first their change in
number is described by competing rates (Fig. 3, left tri-
angle), similar to Onsager-Braun [6,7] theory. However,
by not restricting our approach to time independent rate
constants, we can include a time dependent surface loss
process for the photogenerated PP. In contrast, Onsager-
Braun or exact Onsager [8,16] extensions are entirely done
on infinite space, thus completely neglecting surface losses
due to space confinement [6,16]. Second, the final extrac-
tion yield of the charge carriers created by PP dissociation
is calculated with a drift and diffusion model for the
individual charge carriers (Fig. 3, right triangle) [14,17].

In our general, time dependent approach, the probability
p; of a PP to decay by a certain process i—such as
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FIG. 3 (color online). Combination of dissociation theory (left
triangle) and drift and diffusion model (right triangle). PP disso-
ciation probability pg; results from competitive rates of the indi-
vidual PP loss processes K; and leads to net current with pgy.
Direct surface loss of PP (K) has not been addressed before.

recombination, dissociation or surface loss—is the integral
over the relative probability k;(r) of that individual decay
process and the probability n(z) that the PP still exists at
the time ¢ after its creation,

pi= [0 k(Dn()dr. ®)

The time dependence of k;(¢) is relative to the creation of
the PP and not due to external changes on the whole
system, thus equal for each PP. Time independent k; are
also often called (decay) rates and—assuming noninteract-
ing PP initially created at r = O—un(z) is called the number
of (existing) PP.

The competing, time dependent decay probabilities k;(7)
result in the general differential equation for n(z),

n(0) = = ki()n(2), 3)

where the formal solution for the initial value of n(0) = 1
can be written as

n() = [TKi(0) with K1) = 750 @

We note that for time independent k; the integral over
n(z) in Eq. (2) results in the inverse sum of k; and so yields
the common equation of competing rates, as, e.g., known
from Onsager-Braun theory.

In order to calculate the probabilities of the PP losses p;
according to Fig. 3 (left triangle), k;(r) or equivalent K;(z)
for recombination, surface loss and dissociation process
have to be determined.

Commonly, recombination processes are described ac-
cording to exponential decay with a recombination rate
k.c» which is associated with the inverse PP lifetime 7 by
krec = 1/ T.

In order to calculate the PP dissociation rate kg, We
start from an exact solution of Onsager theory [16] to get
an expression for the PP dissociation probability which
contains recombination and dissociation losses, but ne-
glects any surface effects. In detail, the PP dissociation
probability @giss(krec E» Fpp, m) accounts for Langevin
type recombination, finite recombination rates and finite

ciation rate kg is obtained out of the dissociation proba-
bility ¢4 by inverting its equivalent expression as
competing rates of k.. and kg, thus

kdiss = IQDTSSkreC . (5)
Pdiss

Alternatively, kg, could be approximated directly with

Onsager-Braun [7].

In the newly considered surface loss process a PP is lost
when it diffused to one of the electrodes. As the PP are
created uniformly within the device, surface loss is the
dominant loss mechanism at early times because PP gen-
erated close to the electrodes most likely get lost. However,
at longer times surface loss rapidly becomes less signifi-
cant (not shown), as the PP loss probability changes during
the lifetime of the PP. In order to describe the time depen-
dent surface loss process due to PP diffusion with the
diffusion coefficient Dpp, the same continuous-time sto-
chastic Wiener process as in Eq. (1) is used,

K () = 1 f Lo [(lerr 1
loss leff 0 0 '\/2772DPPI
1 (x — x)?
X — — ——|dxdx. 6
exP( 2 2Dppz> s ©)

The real device length is taken relative to the average
hopping distance of the charge carriers, because the
Wiener process is the continuous limit of a discrete
random-walk process. We express this by a virtual device
shortening to an effective device length [.. Thus,
the importance of the surface loss process is proportional
to the ratio of diffusion length /; to the effective device
length leff'

Now, pgiss and p;c = 1 — p. can be calculated by
integrating Eq. (2) with k.., kqiss and K. (7) from above,
which is the last step in calculating the net generation of
free charge carriers (Fig. 3, left triangle). We note that for
kioss (1) = 0, i.e., Kjo(r) = 1, Eq. (2) simplifies to exact
Onsager or Onsager-Braun theory, depending on which
theory was used to describe kg;g.

Once a PP is dissociated into free polarons, these free
charge carriers have to be extracted over the electrodes to
contribute to the net photocurrent (Fig. 3, right triangle).
Unlike the pure PP diffusion of neutral quasiparticles, the
individual free charges are affected by the external field.

A model for noninteracting charge carriers describing
charge extraction in a device due to drift and thermal
diffusion is that from Sokel and Hughes [17]. Assuming
a uniform charge carrier generation without recombination
losses within the device, the probability p.; of collecting
charges with an external electric field E on the correspond-
ing electrodes of a device of real length [ is
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FIG. 4 (color online). Probability for net photocurrent p.,, and
PP dissociation p;,; from Monte Carlo simulation (markers; 1:1
donor-acceptor blend, CL =6, 7.4 = 100 ns, 300 K, [ =
100 nm, € = 3.0, and no mirror charge effects) and analytic
calculations (fit; Dpp = 3.8 X 10710 m?/s, I = 22 nm, rpp =
30nm, w=43X10"8m?/Vs, 7, =100 ns, 300 K, [ =
100 nm and e = 3.0). For comparison, calculations without
PP diffusion (Dpp = 0 m?/s) and without virtual device short-
ening (/s = 100 nm) are shown.

exp(eEl/kgT) + 1 2kgT
exp(eEl/kgT) — 1  eEl "’

Pcon = (7)
The probability of losing individual, free charges on the
wrong electrodes is simply 1 — p . (Fig. 3, right triangle).
The total probability of net photocurrent generation is
finally given as the product of net generation and collection
probabilities a8 Pext = Pcoll Pdiss
The application of this new theoretical approach to
explain our simulation results is shown in Fig. 4. Wher-
ever possible, the parameters for the calculations were
taken equivalent to those in our simulation, in particular
T=14 =10""7s, T =300 K and / = 100 nm. Dpp was
also set to a value determined in our simulation, i.e., to
Dpp = 3.8 X 10719 m? /s as average of the two diffusion
processes (Fig. 2). rpp, p and [ were taken as fitting
parameters. Best agreement was found for rpp = 3.0 nm
and u =44 %1078 m?/Vs, values that are in good
agreement with our recent publication [11]. For [ =
22 nm the device length of 100 nm is shortened virtually
by a factor of 4.5 for CL = 6. We find agreement between
our simulation results and the extended theory (Fig. 4).
For comparison, calculations were also done for
Dpp = 0 m?/s and for [,z = 100 nm. Clearly, the simula-
tion results cannot be reproduced with these parameter sets.
In conclusion, by using mesoscopic Monte Carlo simu-
lations of polaron pair dissociation and charge extraction in
polymer-fullerene blends, we found that the higher local
mobility directly increases the polaron pair diffusion
length, and delocalization leads to less hops being needed
to overcome a given device length. Thus, the probability of
neutral Coulomb bound polaron pairs to accidentally dif-
fuse to an electrode within their given lifetime grows with
increasing delocalization length. In our Monte Carlo simu-
lation, these effects lead to a high loss of polaron pairs at
the surface, thereby reducing the photocurrent.

In order to describe our findings analytically, we pre-
sented a unified model consisting of exact Onsager theory
for polaron pair dissociation, the Sokel-Hughes model for
charge extraction, and our extension to account for losses
by polaron pair diffusion. Applied to organic semiconduc-
tor devices, this extended model leads to a deeper insight
into the relation of local morphology and the photocurrent.
This has consequences for the optimization of organic
optoelectronic and photovoltaic devices, highlighting the
need to reduce surface losses by adjusting the device
configuration in view of blocking layers or selective elec-
trodes. Indeed, in bulk heterojunction solar cells with con-
jugated polymer donors inhibiting high conjugation
lengths, blocking layers not only suppress the extraction
of free polarons at the wrong electrodes. They also mini-
mize the diffusion of Coulomb bound polaron pairs to the
electrodes, thus increasing their dissociation and extraction
probability.
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