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The temperature dependence of the mobility in suspended graphene samples is investigated. In clean

samples, flexural phonons become the leading scattering mechanism at temperature T * 10 K, and the

resistivity increases quadratically with T. Flexural phonons limit the intrinsic mobility down to a

few m2=Vs at room T. Their effect can be eliminated by applying strain or placing graphene on a

substrate.
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Introduction.—Graphene continues to attract enormous
interest due to both its exotic electronic properties [1] and
realistic prospects of various applications [2]. It has been
found that the intrinsic mobility � of charge carriers in
graphene can exceed 20 m2=V s at room temperature (T)
[3,4], which is the absolute record. So far, such high values
have not been achieved experimentally, because extrinsic
scatterers limit �. The highest � was reported in sus-
pended devices [5,6] and could reach �12 m2=Vs at
240 K [7]. This, however, disagrees with the data of
Ref. [5], where similar samples exhibited room-T � close
to �1 m2=Vs, the value that is routinely achievable for
graphene on a substrate.

In this Letter, we show that flexural phonons (FP) are an
important scattering mechanism in suspended graphene
and the likely origin of the above disagreement, and their
contribution should be suppressed to allow ultrahigh �.
Generally, electron-phonon scattering in graphene is ex-
pected to be weak due to very high phonon frequencies [8].
However, in suspended thin membranes, out of plane vi-
brations lead to a new class of low energy phonons, the
flexural branch [9,10]. In an ideal flat suspended membrane
symmetry arguments show that electrons can only be scat-
tered by two FP simultaneously [3,11]. As a result the
resistivity due to FP rises rapidly as T2 at high T, where
it can be described as elastic scattering by thermally ex-
cited intrinsic ripples [12].

We analyze here the contribution of FP to the resistivity,
and present experimental results which strongly support
the suggestion that FP are a major source of electron
scattering in suspended graphene. This intrinsic limitation
to the achievable conductivity of graphene at room T can
be relaxed by applying tension, which modifies both the
phonons and their coupling to charge carriers.

Model.—Graphene is a two dimensional membrane,
whose elastic properties are well described by the free
energy [9,10]:

F � 1

2
�
Z

dxdyðr2hÞ2 þ 1

2

Z
dxdyð�u2ii þ 2�u2ijÞ; (1)

where � is the bending rigidity, � and � are Lamé coef-
ficients, h is the displacement in the out of plane direction,
and uij ¼ 1=2½@iuj þ @jui þ ð@ihÞð@jhÞ� is the strain ten-

sor. Summation over indices in Eq. (1) is implied. Typical

parameters for graphene [13–15] are � � 1 eV, and � �
3� � 9 eV �A�2. The density is � ¼ 7:6� 10�7 Kg=m2.
The velocities of the longitudinal and transverse phonons

obtained from Eq. (1) are vL ¼
ffiffiffiffiffiffiffiffiffiffi
�þ2�

�

q
� 2:1� 104 m=s

and vT ¼
ffiffiffi
�
�

q
� 1:4� 104 m=s. The FP show the

dispersion

!F
~q
¼ �j ~qj2 (2)

with � ¼ ffiffiffi
�
�

q � 4:6� 10�7 m2=s.

Suspended graphene can be under tension, either due to
the electrostatic force arising from the gate, or as a result of
microfabrication. Let us assume that there are slowly vary-
ing in-plane stresses, uijð~rÞ, which change little on the

scale of the Fermi wavelength, k�1
F , which is the relevant

length for the calculation of the carrier resistivity. Then, the
dispersion in Eq. (2) is changed into

!F
~q
ð~rÞ ¼ j ~qj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
j ~qj2 þ �

�
uiið~rÞ þ 2�

�
uijð~rÞ

qiqj

j ~qj2
s

: (3)

The dispersion becomes anisotropic. For small wave vec-
tors, the dispersion is linear, with a velocity which scales asffiffiffi
�u

p
, where �u is strain.
The coupling between electrons and long wavelength

phonons can be written in terms of the strain tensor. On
symmetry grounds, we can define a scalar potential and a
vector potential which change the effective Dirac equation
which describes the electronic states [1,16–18]
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Vð~rÞ ¼ g0½uxxð~rÞ þ uyyð~rÞ�;
~Að~rÞ ¼ �

a

�
1

2
½uxxð~rÞ � uyyð~rÞ�;�uxyð~rÞ

�
; (4)

where g0 � 20–30 eV is the bare deformation potential

[16], a � 1:4 �A is the distance between nearest carbon
atoms, � ¼ �@ logðtÞ=@ logðaÞ � 2–3 [19], and t � 3 eV
is the hopping between electrons in nearest carbon �
orbitals.

Linearizing Eq. (1) and expressing the atomic displace-
ments in terms of phonon creation and destruction opera-
tors, and using Eq. (4) and the Dirac Hamiltonian for
graphene [1] we can write the full expressions for the
coupling of charge carriers to longitudinal, transverse and
FP, without and with preexisting strains.

Calculation of the resistivity.—We assume that the pho-
non energies are much less than the Fermi energy, so that
the electron is scattered between states at the Fermi surface
(see Fig. 1). The scattering rate has been obtained within
the linearized Boltzmann equation, and the diagrams in-
volved in this calculation are shown in Fig. 1 (for details
see supplementary material [20]). Importantly, we have
taken into account screening in the scalar potential,
gðKÞ ¼ g0="ðKÞ, given by the static dielectric function
"ðKÞ ¼ 1þ e2NðkFÞ=ð2�0KÞ, where NðkFÞ ¼ ð2kFÞ=
ð�@vFÞ is the density of states, with vF the Fermi velocity
and kF the Fermi momentum. At kF the screened scalar
potential g � g0="ðkFÞ � g0=8 � 3 eV is in good agree-
ment with ab initio calculations [21]. For the phonon
dispersion we use Eq. (2) in the isotropic approximation,

!q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2q4 þ �uv2

Lq
2

q
.

The relevant phonons which contribute to the resistivity
are those of momenta j ~qj * 2kF. This scale allows us to
define the Bloch-Grüneisen temperature, kBTBG ¼ @!2kF .

Neglecting first the effect of strain, we find

TL
BG ¼ 57

ffiffiffi
n

p
K TT

BG ¼ 38
ffiffiffi
n

p
K TF

BG ¼ 0:1n K;

(5)

respectively, for in-plane longitudinal (L) and transverse
(T) and for FP (F), where the temperature is in Kelvin and
the electron density n is expressed in 1012 cm�2. Close

to room T we are in the regime T � Ti¼L;T;F
BG for all

concentrations of interest. The corresponding temperature

for FP in the presence of a uniaxial strain, �u is TBG ¼
28

ffiffiffiffiffiffi
�un

p
K. Our focus here is on the experimentally relevant

high—T regime.
In systems with strain, the phonon dispersion relation,

Eq. (2), shows a crossover between a regime dominated by
strain to another where the strain becomes irrelevant, at

q� � vL

ffiffiffi
�u

p
=�. The range of integration over the phonon

momenta is limited by @!q & kBT, and kF & q. In addi-

tion the theory has a natural infrared cutoff with a charac-
teristic momentum qc below which the anharmonic effects
become important [22]. Defining qT as @!qT ¼ kBT, the

scattering rate shows three regimes in which (i) strain is
irrelevant and maxðq�; qcÞ 	 kF, (ii) strain is small and
relevant phonons combine linear and quadratic spectrum
for maxðkF; qcÞ & q� & qT , (iii) strain is high and deter-
mines the scattering rate for qT 	 q�. We finally obtain

1

	F
�

8>>>><
>>>>:

D2ðkBTÞ2
64�@2�2vFkF

ln

�
kBT
@!c

�
maxðq�;qcÞ	 kF 	qT
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32�@2��vFv
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6
ð3ÞD2ðkBTÞ4kF
16�@4�2vFv

6
L �u

3 kF 	 qT 	 q�

; (6)

where D2 ¼ g2=2þ ð�@vFÞ2=ð4a2Þ, and the infrared cut-
off @!c is related to maxðq�; qcÞ. For comparison we give
also the contribution from in-plane phonons,

1

	L;T
�

�
g2

v2
L

þ �2
@
2v2

F

4a2

�
1

v2
L

þ 1

v2
T

��
kFkBT

2�@2vF

: (7)

The T dependence of the scattering due to FP is more
pronounced than that due to in-plane phonons, and it
dominates at high enough T. In the limit of irrelevant
strains, maxðq�; qcÞ 	 kF, the crossover temperature is

	L;TðT�Þ
	FðT�Þ ¼ 1 ) T�ðKÞ � 57� nð1012 cm�2Þ: (8)

When T� & TL;F
BG this crossover does not occur and scat-

tering by FP dominates also at low temperatures. At finite
strain maxðkF; qcÞ 	 q� 	 qT we obtain

	L;TðT�Þ
	FðT�Þ ¼ 1 ) T�ðKÞ � 106 �u: (9)

In the absence of strains, the crossover shown in Eq. (8)
implies that the room T mobility is limited by FP for
densities below 1013 cm�2. Strains reduce significantly
the effect of FP, so that, in the presence of strain, the
mobility is determined by the scattering by in-plane pho-
nons; see Eq. (9).
The contribution to the resistivity from the different

phonon modes can be written, using the expressions for
the scattering rate as

%iðn; T; �uÞ ¼ 2

e2v2
FNðkFÞ	iðn; T; �uÞ

; (10)

q

Q
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FIG. 1 (color online). (a) Two phonon diagram which de-
scribes electron scattering. (b) Kinematics of the process. The
circle denotes the Fermi surface.
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where the index i label the phonon mode. Results for the
resistivity in different regimes are shown in Fig. 2.

Experimental results.—We have fabricated two-terminal
suspended devices following the procedures introduced in
Refs. [5,6]. Typical changes in the resistance R as a func-
tion of the gate-induced concentration n are shown in
Fig. 3(a). The as-fabricated devices exhibited ��
1 m2=Vs but, after their in situ annealing by electric
current, � could reach above 100 m2=V s at low T. To
find �, we have used the standard expression R ¼ R0 þ
ðl=wÞð1=ne�Þ, where R0 describes the contact resistance
plus the effect of neutral scatterers, and both R0 and � are
assumed n independent [3,4]. Supplementary material pro-
vides examples of using this formula to analyze our ex-
perimental data [23]. Our devices had the length
l � 1–2 �m and the channel width w of 2–4 �m [see
the inset in Fig. 3(b)]. At T > 100 K, the above expression
describes well the functional form of the experimental
curves, yielding a constant � over the wide range of
accessible n, if we allow R0 to be different for electrons
and holes [23]. This is expected because of an n� p
barrier that appears in the regime of electron doping due
to our p-doping contacts [5,6]. At T < 100 K, the range of
n over which the expression fits the data rapidly narrows.
Below 20 K, we can use it only for n <
1010 cm�2

because at higher n we enter into the ballistic regime (the

mean free path, proportional to �n1=2, becomes compa-
rable to l). In the ballistic regime, graphene’s conductivity
� is no longer proportional to n [5,6] and the use of � as a
transport parameter has no sense. To make sure that �
extracted over such a narrow range of n is also correct, we
have crosschecked the found � against the quantum mobi-
lities inferred from the onset of Shubnikov–de Haas oscil-
lations at low T [5,6,24] (also, see [23]). For all our devices
with� ranging from�1–100 m2=Vs, we find good agree-
ment between transport and quantum mobilities at liquid-
helium T, in agreement with earlier conclusions [6,24].

Figure 3(b) shows the T dependence of �. It is well
described by the quadratic dependence 1=� ¼ 1=�ðT !
0Þ þ �T2. Surprisingly, we find the coefficient � to vary by
a factor of �2 for different devices [we measured eight
suspended devices; data for three of them studied in detail
are shown in Fig. 3(b)], which is unexpected for an intrin-
sic phonon contribution. Such variations are however ex-
pected if strain modifies electron-phonon scattering as
discussed below. Note that � falls down to 4–7 m2=V s
at 200 K [see Fig. 3(b)] and the extrapolation to room T
yields � of only 2–3 m2=Vs, which is significantly lower
than the values reported in Ref. [6] but in agreement with
Ref. [5]. The disagreement between these two reports can
also be reconciled by a strain suppressing the electron-
phonon scattering.
Discussion.—The density independent � � 1=%en in-

dicates that experiments are in the nonstrained regime
where FPs dominate. From Eq. (6) 1=	F � T2=kF, and
using Eq. (10) %� T2=n. The coefficient � is readily

seen to be given by � � D2k2B
64�e@�2v2

F

lnðkBT
@!c

Þ, where the infra-
red cutoff is the only free parameter [25]. Experiment gives
� � 6:19� 10�6 V s=ðmKÞ2 for the sample with lower
mobility and � � 3:32� 10�6 V s=ðmKÞ2 for the higher
mobility one. Neglecting the logarithmic correction of
order unity, the analytic expression gives � � 3�
10�6 V s=ðmKÞ2 without adjustable parameters.
The difference between samples may be understood as

due to a different cutoff under the logarithm due to strain.
In nonstrained samples there is a natural momentum cutoff

qc � 0:1 �A�1 below which the harmonic approximation
breaks down [22]. Strain increases the validity range for the
harmonic approximation, making qc strain dependent, thus
explaining different cutoff at different strain. A rough
estimate of the expected strains is obtained by comparing

qc � 0:1 �A�1 with q� ¼ vL

ffiffiffi
�u

p
=�, which gives �u�

10�4 � 10�3, consistent with the strain reported in
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FIG. 2 (color online). (a) Contribution to the resistivity from
flexural phonons (blue full line) and from in-plane phonons (red
dashed line). (b) Resistivity for different strain. The in-plane
contribution (broken red line) shows a crossover from a low to a
high—T regime. In both cases, the electronic concentration is
n ¼ 1012 cm�2.

FIG. 3 (color online). (a) Electron transport in suspended
graphene. Graphene resistivity % ¼ Rðw=lÞ as a function of
gate-induced concentration n for T ¼ 5, 10, 25, 50, 100, 150,
and 200 K. (b) Examples of �ðTÞ. The T range was limited by
broadening of the peak beyond the accessible range of n. The
inset shows a scanning electron micrograph of one of our
suspended device. The darker nearly vertical stripe is graphene
suspended below Au contacts. The scale is given by graphene
width of about 1 �m for this particular device.
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Ref. [26] for similar suspended devices. Strain induced by
gate and T can be ruled out since we expect the present
samples to be slacked. Indeed, graphene has a large nega-
tive thermal expansion coefficient (� 10�5=K) [13,27]
and, because our measurements were done at T much
lower than the T at which graphene was free to shrink
along the substrate during microfabrication procedures
(� 150 �C), we can expect a slack of >0:1%.
Nevertheless, small strain can be present in the direction
perpendicular to the slack due to, for example, the initial
strain induced by the substrate and remaining unrelaxed
under and near metal contacts. A complete theory would
require the treatment of anharmonic effects, which is be-
yond the scope of the present work. For elevated tempera-
tures (T > 100 K), the data in [7] show higher mobilities
than those in Fig. 3. A fit to these data using Eq. (6)
suggests that the sample was under significant strain.

Conclusions.—The experimental and theoretical results
presented here suggest that FP are the main mechanism
which limits the resistivity in suspended graphene samples,
at temperatures above 10 K. Scattering by FP involves two
modes, leading to a T2 dependence at high temperatures,
with mobility independent of carrier concentration. These
results agree qualitatively with classical theory assuming
elastic scattering by static thermally excited ripples [12].
Quantitatively, one of our main results is that in devices
with little strain the mobility does not exceed values of the
order of 1 m2V�1 s�1 at room T, that is, FP restrict the
electron mobility to values typical for exfoliated graphene
on a substrate.

The dispersion of FP changes from quadratic to linear if
the sample is under tension. As a result, the influence of FP
on the transport properties is suppressed. The T depen-
dence of resistivity remains quadratic but becomes much
weaker. Moreover, in this regime phonon-induced resistiv-
ity is independent on n and the constant � approximation
breaks down. Importantly, applying rather weak strains
may be enough to increase dramatically the mobility in
freely suspended samples at room T.

A very recent theory work [28] has also addressed the
role of FP on electron transport. Insofar as the two analysis
partially overlap, the results are in agreement.
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