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We study the behavior of the quarter-filled Kondo-lattice model on a triangular lattice by combining a

zero-temperature variational approach and finite-temperature Monte Carlo simulations. For intermediate

coupling between itinerant electrons and classical moments Sj, we find a thermodynamic phase transition

into an exotic spin ordering with uniform scalar spin chirality and hSji ¼ 0. The state exhibits a

spontaneous quantum Hall effect. We also study how its properties are affected by the application of

an external magnetic field.
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The very broad spectrum of physical phases and re-
sponses of strongly correlated materials is rooted in the
simple fact that electrons carry both charge and spin. The
interplay between these degrees of freedom gives rise to
unconventional forms of superconductivity, multiferroic
behavior, giant magnetoresistance, and heavy fermion
physics. It also entails the possibility of strong magneto-
electric effects. In insulators, the electric polarization can
be induced or modified with a magnetic field, or by cou-
pling to certain magnetic orderings [1]. In metallic sys-
tems, the magnetoelectric effects are manifested in the
conductivity tensor. The giant [2,3] and colossal [4] mag-
netoresistance effects are examples in which the diagonal
part of the conductivity tensor is dramatically modified. In
addition, magnetic ordering can lead to changes in the off-
diagonal components. For instance, the ‘‘anomalous Hall
effect’’ observed in the presence of ferromagnetic order,
even in the absence of an external magnetic field, has
been the subject of active research over the past several
decades [5–7].

Recently, a residual Hall effect was observed in the
absence of both magnetic field and uniform magnetization
in the metallic pyrochlore Pr2Ir2O7 [8]. This observation
suggests that the effect is caused by a magnetic structure
with nonzero average scalar spin chirality, which for a
single triangular plaquette is h�ijki ¼ hSi � Sj � Ski [9].

Scalar spin chirality breaks time reversal and parity sym-
metries and can be stabilized even in the absence of usual
magnetic ordering: hSii ¼ 0 [10]. The symmetry properties
of this order parameter lead to unusual magnetoelectric
effects in metals [9,11–15] and in insulators [16]. The
origin of the magnetoelectric coupling lies in the Berry
phase [17] that electrons accumulate as they traverse
closed paths in the real space. The Berry phase is half of
the solid angle subtended by the electron spin as it moves
around the path; e.g., in the continuum limit of smooth
magnetic textures, it is proportional to the integral of the
scalar spin chirality (or Berry curvature) over the area
enclosed by the loop. For a given spin species (locally
parallel or antiparallel to the magnetic texture), the effect

of the Berry phase is equivalent to an orbital coupling to a
magnetic field. Therefore, it can lead to finite Hall con-
ductivity even in the absence of an external magnetic field.
Under the special circumstances of commensuration

between the strength of the effective magnetic field (i.e.,
Berry curvature of magnetic texture) and the itinerant
electron density in quasi-2D systems, there is an exciting
possibility of obtaining a spontaneous quantum Hall effect
(SQHE), i.e., quantized Hall response for zero magnetic
field and zero uniform spin polarization. In a recent work
[11], we have shown that such an insulating chiral phase is
indeed stabilized at zero temperature, T ¼ 0, in the weak-
coupling regime of a triangular Kondo lattice model
(KLM) for a 3=4 filled conduction band (� ¼ 3=4). This
result was based on the perfect nesting properties of the
noninteracting Fermi surface for � ¼ 3=4, which leads to a
‘‘3Q ordering’’ of the classical local moments at T ¼ 0.
In the present Letter we explore the stability of chiral

order in a 2D KLMwith respect to thermal fluctuations and
magnetic fields. It is well known that a continuous symme-
try cannot be broken at finite temperature in 2D when the
interactions are of short range [18]. However, a noncopla-
nar magnetic ordering breaks a discrete Z2 symmetry, in
addition to the continuous symmetry, that corresponds to
the two disconnected SOð3Þ sectors of Oð3Þ rotations
needed to parametrize the order parameter [19,20]. The
Ising component of this order parameter (chirality) can
survive at finite temperature leading to a chiral spin-liquid:
h�ijki � 0 and hSji ¼ 0. The interplay between the con-

tinuous and the Ising degrees of freedom in such a chiral
liquid is nontrivial and can lead to deviations from the Ising
universality class and a reduction of the transition tempera-
ture [21,22].
To study this problem we combined a zero-temperature

variational approach with finite-temperature Monte Carlo
(MC) simulations [23] of the KLM with classical local
moments. We demonstrate that the 3Q phase with uniform
chirality (UCP) of Ref. [11] is stable not only at � ¼ 3=4,
but also at � ¼ 1=4 in the intermediate coupling regime
1 & J=t & 4 (t is the hopping amplitude for the conduction
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electrons and J is their exchange coupling to the localized
moments). This result agrees with the small-unit cell varia-
tional calculations at T ¼ 0 presented in Ref. [24]. Our
MC results provide evidence for a first order thermody-
namic phase transition into the UCP. The obtained ordering
temperature at J ¼ 2t, Tc ’ 0:03t, is relatively small com-
pared to J and t, likely because of the strong frustration and
the suppression of the chiral order by the continuous
fluctuations of magnetization. Nevertheless, the value of
Tc may be high enough for observing SQHE near room
temperature in transition metal oxides (assuming that t is of
order 1 eV [25]). Finally, we consider the effect of a
magnetic field acting on the local moments both on the
stability of the T ¼ 0 UCP phase and the spontaneous
quantum Hall effect, as well as on the value of Tc.

We consider the Kondo-lattice Hamiltonian on a trian-
gular lattice with periodic boundary conditions,

H ¼ �t
X

hl;ji�
ðcyl�cj� þ H:c:Þ � J

X

j��

Sj � cyj����cj�;

where cyj� (cj�) is the creation (annihilation) operator of an

electron with spin � on site j, Sj is a classical Heisenberg

spin with jSjj ¼ 1, ��� ¼ ð�x
��; �

y
��; �z

��Þ is a vector of

Pauli matrices, and hl; ji indicates that l and j are nearest-
neighbor sites. Since the sign of J is irrelevant for classical
moments, Sj, we will assume J > 0 for concreteness.

The state of interest is characterized by the local scalar
spin chirality�ijk � Si � Sj � Sk, and its Fourier transform

�q ¼ N�1
X

�

��e
iq�r: (1)

The index� denotes each triangular plaquette, andN ¼ L2

is the total number of lattice sites. The global order pa-
rameter for the UCP is h�0i. Local spin correlations are
described by the spin structure factor

SðkÞ ¼ N�1
X

j;l

hSl � Sjieik�ðrl�rjÞ; (2)

which is useful for characterization of the T ¼ 0 spin
ordering. We note here that for the perfectly ordered
UCP, which is the same as the ‘‘all-out’’ phase in Fig. 1,
simple arithmetic shows that �2

0 ’ 0:59 and Sð0Þ ¼ 0,
while �2

q ¼ 0 and Sð0Þ ¼ N for the fully polarized ferro-

magnetic state.
The MC simulation samples the space of all possible

classical spin configurations. For each configuration fSg,
the electron eigenstates are found by exact diagonalization
of H . To study the thermodynamic properties at a fixed
filling factor �, we perform a Legendre transformation of
the free energy in the grand canonical ensemble. The
resulting free energy is

FðN;�Þ � � 1

�
ln�; � � X

fSg
WðfSgÞ; (3)

with WðfSgÞ � e���fSgNe
Q

�½1þ e��f	���fSgg�. The chemi-
cal potential �fSg is adjusted for a given configuration fSg
such that the total number of electrons, Ne ¼

P
�f�, is the

same for every spin configuration. Here, 	� is the �th

eigenvalue of H ðfSgÞ, f� � ðe�f	���fSgg þ 1Þ�1, and � ¼
1=T. In this work we compute the energy density, 	 �
N�1@�ð�FÞ, and the specific heat, c � @T	. Our numerical

results are based on the single spin flip MC dynamics, with
the flip decided by applying the Metropolis algorithm. We
perform 10 000 MC sweeps for each processor and esti-
mate the statistical errors using 8 mean values typically.
First we consider the T ¼ 0 case by means of a varia-

tional calculation in which we minimize the total energy
over several highly symmetric four-sublattice spin struc-
tures shown in Fig. 1 [26]. The all-out and ferromagnetic
configurations are the only two states that are stabilized as
a function of J=t for � ¼ 1=4. Figure 2(a) includes a
comparison between the corresponding energy densities
	ðfSgÞ � L�2

P
�	�f� for � ¼ 1=4. The solid lines are

the results for L ¼ 512. The all-out structure has the lowest
energy for 0< J=t & 4:9, while the ferromagnetic

two-in--two-out three-in--one-out

FIG. 1 (color online). The four-sublattice spin structures.
(a) Triangular lattice, with a� d indicating each sublattice
(b) High-symmetry four-sublattice spin structures. The nomen-
clature follows the one for magnetic ordering on a tetrahedron
with vertices ðabcdÞ.

two-in--two-out

FIG. 2 (color online). (a) Energy per site as a function of J=t
for the all-out, two-in–two-out, and ferromagnetic spin structures
at � ¼ 1=4 for L ¼ 512 (solid line) and L ¼ 8 (dashed line).
Insets show an enlarged view for small J=t. (b) Coupling J=t
dependence of �2

0 and Sð0Þ at quarter filling by Monte Carlo

method with L ¼ 8 and very low temperature T=t ¼ 10�4. Four
mean values of �2

0 and Sð0Þ are shown for each value of J=t to
indicate the lack of convergence the MC simulation in the
interval the phase transition, 4 & J=t & 6.
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configuration becomes the minimum energy state for
J=t * 4:9. A similar comparison for L ¼ 8 (dashed lines)
indicates that important size effects appear in the weak
coupling regime, J=t & 1, for small values of N [see the
inset of Fig. 2(a)] The energy of the ferromagnetic struc-
ture is lower than the energy of the all-out structure for
L ¼ 8 and small values of J=t < 1, although this is not true
in the thermodynamic limit. The all-out structure, which is
the lowest energy variational state for J=t & 4:9, has a net
uniform scalar spin chirality. Therefore, it has to produce a
spontaneous Hall effect. By explicit calculation of the Hall
conductivity from the electron band structure, we find the
quantized value �xy ¼ �e2=h for 0:7 & J=t & 4:9.

Not being limited to the 2� 2magnetic unit cell size, the
low temperature MC calculations allow us to test the varia-
tional approach. Figure 2(b) shows our MC results for the
J=t dependence of �2

0 and Sð0Þ at T=t ¼ 10�4 and L ¼ 8.
These results indicate that the all-out spin structure with
uniform scalar chirality is indeed stable for J=t & 4, while
the ferromagnetic phase is stabilized for J=t * 5 (the long
range magnetic ordering is stable only at T ¼ 0). Our MC
simulation does not converge at these very low temperatures
in the interval 4 & J=t & 6. We traced the lack of conver-
gence to an intervening spiral phase, which in the L ¼ 8
lattice is slightly lower in energy than the fully polarized
and the all-out phases for 4:9 & J=t & 6:3. However,
the spiral becomes unstable for larger lattices (L > 64).
Therefore, we conclude that the nonconvergent window
between the all-out and the fully polarized phases is only
a finite size effect, and there is a direct transition from the
all-out to the ferromagnetic phase as a function of J=t [24].
We also find that Sð0Þ is finite while�2

0 is almost zero below

J=t� 0:5. This is a consequence of the finite size effect that
was already discussed in our variational calculation [see
Fig. 2(a)]. The intermediate coupling range, 1< J=t < 4,
appears to be stable against size effects.

We now turn to the question of the finite temperature
stability of the chiral magnetic phase. Our main results are
presented in Fig. 3. To control the size effects, we varied L
at fixed coupling strength J=t ¼ 2. This value of J=t gives
a robust all-out chiral ordering at T ¼ 0. As expected from
the simple Ising argument in 2D, this chiral ordering
should persist for a finite range of temperatures. Starting
from the maximum possible value at T ¼ 0, the scalar
chirality decreases as a function of T and vanishes at Tc ’
0:026t. The snapshot of a spin configuration at T ¼ 0:005t
in Fig. 3(b) illustrates how the finite-temperature fluctua-
tions destabilize the chiral ordering. The temperature de-
pendence of the spin-spin and chirality-chirality
correlation functions (not shown in this paper) are also
consistent with chiral ordering without spin ordering. The
calculated specific heat curve exhibits a very sharp and
symmetric peak at Tc, which is an indication of a first order
transition. To test this possibility, we analyzed the tem-
perature dependence of the internal energy probability
distribution function [Fig. 3(c)]. We found that it has a

bimodal distribution for T near Tc and L ¼ 12. In combi-
nation with the specific heat behavior, this result indicates
that the thermodynamic phase transition between the para-
magnetic and the chiral all-out state is of the first order.
The magnetic field, h, is an important parameter that can

be used to control the chiral magnetic states. It couples to
both local and itinerant electron spins, as well as to the
orbital motion of electrons, and hence can lead to a variety
of phases. For simplicity, here we only consider the
Zeeman coupling to the local moments, H z ¼ �P

jH �
Sj, with H � g�BSh ¼ Hẑ, and neglect the coupling to

the conduction electrons (S is spin of the localized mo-
ments). This approximation is justified for S � 1 because
the Pauli susceptibility becomes much smaller than the
local moment susceptibility, while the orbital effect of
Berry curvature induced by the magnetic texture dominates
over the orbital effect of h.
The T ¼ 0 variational approach for J=t ¼ 2 reveals that

the all-out structure is distorted by the field in the way that

FIG. 3 (color online). Results of Monte Carlo simulations at
quarter filling and J=t ¼ 2. (a) Temperature dependence of
specific heat c and �2

0. (b) Snapshot of a spin configuration.

Each shade (color) corresponds to each of the four different
sublattices (L ¼ 12, T=t ¼ 0:005). (c) Internal energy distribu-
tion near the critical temperature for L ¼ 12.

FIG. 4 (color online). Variational calculation of the ground
state of H þH z by minimizing the energy over several highly
symmetric four-sublattice spin configurations (L ¼ 2048):
(a) Hall conductance, �xy, and uniform magnetization along

the field direction, mz, as a function of the applied magnetic
field H=t. (b) Field dependence of the four-sublattice spin
structure of the variational ground state.

PRL 105, 266405 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

266405-3



interpolates between the all-out and three-in–one-out struc-
ture [Fig. 1(b)], until it saturates at Hsat ’ 0:5t as shown in
Fig. 4(b). The spins of one of the four sublattices are always
aligned with the field direction. The gap in the electron
spectrum closes at the critical field Hc=t ’ 0:15 leading
to an insulator-to-metal transition. Correspondingly, �xy,

starts to decrease continuously at H ¼ Hc, from its quan-
tized value forH 	 Hc to zero forH 
 Hsat. In thisway, the
application of an external field suppresses SQHE in the
insulating state by inducing a metallic phase with anoma-
lous Hall effect.

We performed MC simulations in the low field region,
H ¼ 0:025t and H ¼ 0:05t, for L ¼ 8 and L ¼ 12 (for
larger values of H the variational approach revealed spu-
rious finite size effects in systems withL < 64). The results
are shown in Fig. 5. The position of the specific heat peak
[Fig. 5(a)] and the onset of the chiral order parameter
[Fig. 5(a)] indicate that the transition temperature to the
chiral phase is suppressed by the presence of the magnetic
field. The snapshots of the spin configurations in each
sublattice (identified with color) show a result that is con-
sistent with the variational approach: the spins are canted
towards the three-in–one-out configuration, with one of the
spin sublattices tending to be aligned with the applied field
[see Figs. 5(b) and 5(c)]. The fluctuations around this
preferred orientation decrease with increasing H.

In summary, we have demonstrated the finite-
temperature stability of a chiral spin liquid in a Kondo
lattice model. This liquid exhibits a spontaneous quantum
Hall effect, which can be tuned by an external magnetic
field. The phase exists in a wide range of Hund’s coupling
strengths and can therefore be realized, e.g., in manganese-
based materials [25]. Even though we did not include the
effect of quantum fluctuations, the chiral phase is expected

to be stable for S � 1. In the quantum limit S ¼ 1=2, it
may also be relevant to Na0:5CoO2 [11,27].
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