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A Wigner crystal formed with trapped ions can undergo a structural phase transition, which is

determined only by the mechanical conditions on a classical level. Instead of this classical result, we

show that through consideration of quantum and thermal fluctuation, a structural phase transition can be

driven solely by a change in the system’s temperature. We determine a finite-temperature phase diagram

for trapped ions using the renormalization group method and the path integral formalism, and propose an

experimental scheme to observe the predicted temperature-driven structural phase transition, which is well

within the reach of the current ion trap technology.
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Ions trapped in a linear Paul trap or a planar Penning trap
have become a very useful platform [1], with exciting
applications in both quantum information science [2] and
precision measurements [3]. Trapped ions also provide
a controllable system to simulate and study many-body
phase transitions [4]. A well-known phase transition that
can be observed in a small ion crystal is the structural phase
transition of the Wigner crystal formed with trapped ions,
which has raised significant interest and been extensively
studied [5–16]. For instance, a linear crystal in a Paul trap
can be squeezed into a zigzag shape with a change in the
aspect ratio between the transverse and the axial trapping
frequencies. The structural phase transition for trapped
ions so far is formulated on a classical level, determined
by the mechanical equilibrium conditions. In these classi-
cal treatments that neglect quantum and thermal fluctua-
tion of the ion positions, the structural phase transition is
independent of the system’s temperature.

In this Letter, we develop a theoretical formalism to take
into account quantum and thermal fluctuation in the struc-
tural phase transition, and show for the first time that a
structural phase transition can be driven solely by a change
in the system’s temperature. The structural phase transition
is induced by condensation of phonons into the soft mode
(the lowest frequency collective oscillation mode of the ion
crystal). Anharmonic coupling between different phonon
modes intrinsic in the Coulomb interaction leads to renor-
malization of the soft-mode frequency which affects the
phase transition point. We calculate the system’s partition
function using the path integral approach, and gradually
integrate out the high frequency modes with the renormal-
ization group (RG) method to construct the RG flow for the
soft-mode frequency. With this formalism, we can calcu-
late the finite-temperature phase diagram for the ion crys-
tal. Using the linear ion crystal in a Paul trap as an
example, we propose an experimental scheme to detect
the predicted temperature-driven linear-to-zigzag struc-
tural phase transition and show that the requirements in

observing this transition fits well with the current status
of the experimental technology.
We consider N ions of mass m subject to external

harmonic potentials in both axial (z) and transverse (x, y)
directions. To be concrete, we take a linear Paul trap as an
example with the trapping frequencies !y > !x > !z (the

method can be extended easily to other types of traps). We
consider the system near the linear-to-zigzag transition
point, with the ions distributed along the z direction with
a tendency towards the zigzag transition in the x-z plane.
To describe this phase transition, it suffices to consider the
ion interaction Hamiltonian in the x-z plane, given by
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where � is the Coulomb interaction rate. We assume the
temperature of the system is significantly below the melt-
ing temperature of the ion crystal, which is typically of the
order of 0.1–1 K [17]. This condition is satisfied straight-
forwardly in experiments with laser cooling. The ions have
well-defined equilibrium positions �ri, and we expand ri
around the equilibrium positions up to the fourth order of
the displacement operators �ri � ri � �ri. Up to the second
order of �ri, the quadratic part of the Hamiltonian can be
diagonalized to get the normal phonon modes. For N ions
in the x-z plane, there are in total 2N normal modes, and we
label them from 1 to 2N in the ascending order of the mode
eigenfrequencies. Expressed with the coordinates of the
normal modes, the Hamiltonian has the form
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where pi and qi are the canonical momentum and coor-
dinate for the ith phonon modes and !i denotes the corre-
sponding eigenfrequency. We have factorized out!z (axial

trap frequency) and z0 � ð2�=m!2
zÞ1=3 (typical distance

between the ions) as the frequency and the length units (!i,
qi, Bijk, Cijkl are thus all dimensionless). The terms with

Bijk and Cijkl represent the cubic and quartic terms in the

expansion of the Coulomb potential, and we need to keep
both of them as they lead to the same order of correction to
the phase transition point in the following renormalization
calculation. The values for !i, Bijk, and Cijkl are deter-

mined numerically through expansion of the Hamiltonian
in Eq. (1) and diagonalization of its quadratic components
[18]. The nonlinear interaction between phonon modes
has been observed in Ref. [19], which leads to interesting
collapse and revival behavior of the contrast of a Ramsey-
type experiment.

The structural phase transition is caused by phonon con-
densation in the lowest normal mode (soft mode, or mode 1
in our notation, which corresponds to the zigzagmode for an
ion chain). This happens when the effective frequency !1eff

of the soft mode crosses zero. In the classical treatment [15],
interaction and fluctuation of the phonon modes are ne-
glected and the effective frequency !1eff is just given by
the bare frequency !1 in the Hamiltonian (2). As !1 is
determined simply through expansion and diagonalization
of the trapping and the Coulomb potentials, it is apparently
determined only by the mechanical conditions and has no
dependence on the system’s temperature. Here, we take into
account the phonon interaction and derive the effective
frequency !1eff through a renormalization group treatment
of the partition function corresponding to the Hamiltonian
(2) in the path integral formalism. As a qualitatively new
result from this treatment, we show that the structural phase
transition is not purely mechanical any more and becomes
a thermodynamic transition depending on the system
temperature.

In the path integral formalism, the partition function of

the system Z ¼ e�H=ðkBTÞ (where T is the system tempera-
ture) can be written as [20]

Z ¼
I Y2N
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The RGmethod provides a way to work out this partition
function and to find the effective frequency !1eff of the
lowest mode [21]. The basic idea of the RG method is to
integrate out the high frequency modes in the path integral
step by step to get a renormalized action for the lower

frequency modes. We start from the highest mode 2N, and
the integration over this mode can be done in a perturbative
manner with Gaussian integration over the variable q2Nð�Þ,
where � is the imaginary time in the unit of 1=!z. We
define a small parameter � ¼ �z=z0, where the length scale

�z ¼ ð@=m!zÞ1=2 characterizes the ion oscillation ampli-
tude for a single ion in a trap with frequency !z. We
consider renormalization correction to the effective pa-
rameters up to the order of �2 (which is the order of Cijkl

term in the action). Following the standard procedure to
calculate the path integral, we find that after integration
of the mode 2N, the action for the modes 1 to 2N � 1 still
takes the form of Eq. (4) up to the order �2, with the
effective parameters renormalized to
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where !ij and !0
ij denote the coefficients before the qua-

dratic term qiqj in the action [!ij ¼ !2
i �ij in Eq. (4)], and

for the coefficients written as Ci;j;2N;2N or Bi;2N;2N , summa-

tion over all possible permutations of the indices are implic-
itly assumed.After the renormalization,we rediagonalize the
quadratic term from

P
ij!

0
ijqiqj to

P
i!

02
i q

02
i and make the

corresponding changes to B0
ijk and C0

ijkl through change of

coordinates fromqi toq
0
i.With this step, the action then takes

the same form as in Eq. (4), with the mode index summariz-
ing from1 to2N � 1 and the coefficients renormalized to!0

i,
B0
ijk, and C0

ijkl. Then we can continue with integration of

the next highest mode until we finally integrate out all the
modes except for the soft mode 1. The transformation
ð!i; Bijk; CijklÞ ! ð!0

i; B
0
ijk; C

0
ijklÞ defines theRGflowequa-

tions, and after integration of all the modes from mode N to
mode 2, the last !0

1 gives the effective frequency !1eff . By
numerically solving the RG flow equations, the structural
phase transition point can be determined by the criterion
!1eff ¼ 0. Since the RG flow equations [see Eq. (5)] depend
on the system temperature T, and so does !1eff , structural
phase transition can be possibly driven solely by temperature
under a fixed aspect ratio of the trap.
The temperature-related functions f1 and f2 can be well

approximated at temperature T � @!z!2N=kB (the latter
corresponds to a pretty low temperature compared to
Doppler cooling limit) by

f1 ’ 2kB
@!z!2N

T; f2 ’ 2f1; (6)
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so the renormalization correction to !1eff is linear in T
for a wide range of temperature. As a result, the critical
exponent for temperature-induced linear-to-zigzag phase
transition should be 1, as long as the critical temperature is
above @!z!2N=kB. The magnitude of the correction to !ij

at each step is of the order of kBT=ðm!zz
2
0Þ, which is a

small quantity representing the ratio of system temperature
to melting temperature. It is also worth mentioning that
even for zero temperature, the renormalization correction
to !1eff is nonzero as f1 ¼ f2 ¼ 1 when T ¼ 0, providing
correction from quantum fluctuation to this structural
phase transition.

In the following, we carry out some explicit numerical
calculations to show that it is realistic to observe the
predicted temperature-driven structural phase transition
in the current experimental system. In our calculation, we
take 10 ions as an example with the mass of ions set the
same as Ybþ ions. The axial trap frequency is set to
100 kHz and the aspect ratio !x=!z is chosen around the
classical critical value 4.59 [13]. Temperature is varied on
the order from �K to mK. Figure 1 shows the change of
soft-mode frequency during the process of renormalization
(the RG flow for!1) at different temperatures. We find that
each renormalization step (integration of one normal
mode) increases slightly the soft-mode frequency, and the
change after 2N � 1 renormalization steps can be quite
significant. The change clearly increases with the tempera-
ture, as the thermal fluctuation of the ion positions deviate
the system from the classical limit where each ion is
assumed fixed at its equilibrium position.

To characterize the phase transition, we calculate the
order parameter, which is taken as the transverse displace-
ment of the zigzag mode (the mean value of q1) for the
linear-to-zigzag transition. Figure 2 shows the value of the

order parameter and the corresponding phase diagram as a
function of both temperature and aspect ratio. The phase
boundary has a slope there, which shows that a structure
phase transition can be driven vertically at a fixed aspect
ratio solely by change of the system temperature. The order
parameter gradually increases from zero when one crosses
the transition point, so the transition is still of the second
order [15], as one expects for the symmetry breaking
transition. From the figure, we also see that the order
parameter is more sensitive to the aspect ratio than to the
temperature. Tuning the aspect ratio by about 1% (4.59 to
4.54, for example) at a fixed temperature (around 1 mK)
will result in a change of the order parameter by about
5 �m, while the same change with a fixed aspect ratio
around 4.54 requires one to cool the temperature from
10 mK to 1 mK.
The experiment done in Ref. [10] has successfully ob-

served the classical linear-to-zigzag phase transition in a
trapped ion crystal by changing the radial trap frequency
with an accuracy of 2 kHz (0.5% for aspect ratio). With
such an accuracy (and probably better nowadays), one can
pick an optimum value for the aspect ratio to maximize the
change of order parameter based on the numerical calcu-
lation shown in Fig. 3. The CCD camera used in Ref. [10]
has a resolution of 0:3–1 �m, which is enough to tell the
transition point as the change of order parameter is appar-
ently larger than 1 �m for a relatively wide range of aspect
ratios [see Fig. 3].
In real experiments carried out at finite temperature, the

thermal fluctuation of the ions’ positions will blur the
image of ions. In this case, we need to calculate whether
the image of ions are still sharp enough to show the
temperature-driven structural phase transition for the ion
chain. We calculate the thermal fluctuation of ions’ axial
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FIG. 1. (a) Change of the soft-mode frequency during
the renormalization process with the aspect ratio � � !x=
!z ¼ 4:6. Different curves correspond to different temperature,
and the number of the renormalization steps represent the
number of high frequency modes that have been integrated out.

FIG. 2. The map of the order parameter (with value in units
of �m) as a function of temperature and aspect ratio in the
linear-to-zigzag phase transition for N ¼ 10 ions. The dashed
line marks the phase boundary where the order parameter
crosses zero.

PRL 105, 265703 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

265703-3



and transverse positions, and plot the probability density of
the ions’ wave packets above and below the critical tem-
perature [see Fig. 4], with the aspect ratio tuned near the
classical critical value. Here we only demonstrate the case
with a few ions (N ¼ 10) where the transverse displace-
ment of all ions can be roughly treated as the same as
the order parameter calculated above, but our calculation
method works for larger number of ions as well. Our
simulation shows that one can clearly observe the struc-
tural phase transition from linear-to-zigzag pattern, as the
thermal fluctuation of ions’ transverse position in the con-
sidered temperature range is much smaller than the change
of order parameter across the transition point.

In summary, we have developed a method to character-
ize the temperature-driven structural phase transition in a
trapped ion crystal, taking into account contributions from
both quantum and thermal fluctuation. We use renormal-
ization group method to calculate the effective soft-mode
frequency under finite temperature for a given number of
ions and show that the system has an interesting phase
diagram with respect to the system temperature and aspect
ratio. Our predictions can be verified under current experi-
mental conditions, as shown by our explicit calculations
taking account of the experimental imperfections.
This work is supported by the IARPA MUSIQC
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FIG. 3. The change of value of the order parameter as a
function of the aspect ratio when the temperature is cooled
from 10 to 1 mK. By tuning the aspect ratio of the confining
trap to an optimum value, cooling the ions can give rise to a
change of the order parameter as large as 5 �m, resulting in a
fairly noticeable transition from the linear-to-zigzag pattern.
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FIG. 4. Plot of ions’ probability density in x-z plane (in units
of �m for both axes) due to thermal fluctuation. The top figure
shows the position and the probability density of 10 ions at high
temperature (5 mK), which characterizes the linear phase. The
bottom figure is simulating the ion’s position after cooling the
temperature to 1 mK, and the zigzag pattern clearly emerges.
The aspect ratio is tuned at about 4.57.
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