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We calculate from first principles the temperature-dependent renormalization of the direct band gap of

diamond arising from electron-phonon interactions. The calculated temperature dependence is in good

agreement with spectroscopic ellipsometry measurements, and the zero-point renormalization of the band

gap is found to be as large as 0.6 eV. We also calculate the temperature-dependent broadening of the direct

absorption edge and find good agreement with experiment. Our work calls for a critical revision of the

band structures of other carbon-based materials calculated by neglecting electron-phonon interactions.
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The calculation of quasiparticle band structures from
first principles has reached a very high level of accuracy.
Standard calculations based on density-functional theory
(DFT) are improved by including many-electron self-
energy effects using a variety of techniques ranging from
theGW approach [1,2] to dynamical mean-field theory [3],
and the best band structures agree with measured photo-
emission spectra within a few tens of an eV. While signifi-
cant efforts have been devoted to improving the description
of electron-electron interactions, it appears that in com-
parison, the effect of lattice vibrations on the quasiparticle
band structures has been mostly neglected within the com-
munity working on first-principles electronic structure
methods. One possible reason is that electron-phonon ef-
fects are generally assumed to yield quasiparticle energy
shifts of the order of 10–50 meV, thereby falling within the
precision of the best electronic-structure calculations. In
addition, the calculation of electron-phonon interactions
has been traditionally very challenging, and only recently
novel approaches have rendered accurate electron-phonon
calculations accessible; see Ref. [4] and references therein.

In the case of diamond, several studies including em-
pirical pseudopotential calculations [5], fitting of optical
data [6], and path-integral Monte Carlo simulations [7] all
point to a surprisingly large electron-phonon renormaliza-
tion of the band gaps of up to 0.7 eV. If confirmed, such
large renormalization would be of the same order of mag-
nitude of GW corrections [1] to the DFT band structure of
diamond, and hence should be taken into account on the
same footing as electron-electron interactions.

In this Letter we calculate from first principles the
electron-phonon renormalization of the direct band gap
�0
25v ! �15c of diamond using the Allen-Heine theory of

the temperature dependence of electronic band structures
[8]. The unperturbed band structures are obtained within
the GW approximation, and the lattice dynamics is de-
scribed within density-functional perturbation theory [9].
The calculated temperature dependence of the direct band

gap and the broadening of the direct absorption edge are
found to be in good agreement with synchrotron-based
spectroscopic ellipsometry measurements [10]. The zero-
point renormalization of the gap is found to be as large as
615 meV. This value is comparable to self-energy correc-
tions obtained from electron-electron interactions [1], and
calls for a reexamination of the band structures of related
materials which neglect electron-phonon effects.
The Allen-Heine theory [8] describes the thermal shift

of the electronic energies using second-order perturbation
theory within the harmonic and adiabatic approximations.
The electron-phonon correction ��nk to the one-particle
energy �nk of the electronic state jnki with wave vector k
and band n is

��nk ¼ �SE�nk þ �DW�nk; (1)

where �SE�nk and �DW�nk are the so-called phonon-
induced self-energy (SE) or Fan term [11] and Debye-
Waller (DW) term, respectively. The SE term is obtained
by considering first-order phonon-induced perturbations to
the electron energies up to the second-order in the ionic
displacements, and involves the electron-one phonon in-
teraction twice. The DW term is obtained by considering
second-order phonon-induced perturbations to the electron
energies and involves the electron-two phonon interaction
once [Fig. 1]. In the present Letter we neglect the effect of
the thermal expansion of the lattice, which is negligible in
diamond due to the small thermal expansion coefficient
(< 10 meV at 700 K) [5]. The Allen-Heine theory exploits
the translational invariance of the thermal shift which
results in expressing both the SE and DW corrections using
only the first-order variations �q�V of the self-consistent

potential associated with a phonon of wave vector
q, branch �, and frequency !q�. The SE term is [4,12]

�SE�nk ¼ X

m�n;�

Z dq

�BZ

2nq� þ 1

�nk � �mkþq

jgmn;�ðk;qÞj2; (2)
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where nq� is the Bose-Einstein occupation factor and �BZ

the volume of the Brillouin zone. The electron-phonon
matrix element gmn;�ðk;qÞ in Eq. (2) is calculated as

hmkþ qj�q�Vjnki. After algebraic manipulations we

were able to recast the DW term of Ref. [8] in a form
which parallels the SE expression

�DW�nk ¼ � X

m�n;�

Z dq

�BZ

2nq� þ 1

�nk � �mk

½gDWmn;�ðk;qÞ�2; (3)

where we have introduced a ‘‘Debye-Waller electron-
phonon matrix element’’ defined as follows:

½gDWmn;�ðk;qÞ�2 ¼ 1

2!q�

X

��0
t���0 ðqÞh�mn;�ðkÞhmn;�0 ðkÞ; (4)

t���;�0�0 ðqÞ ¼ u��;��ðqÞu�;��0 ðqÞ þ u��;�0�ðqÞu�;�0�0 ðqÞ; (5)

hmn;�ðkÞ ¼
X

�

u�1
��ð0Þ!1=2

0� gmn;�ðk; 0Þ: (6)

The quantities u��ðqÞ appearing in Eqs. (5) and (6) are the
mass-scaled phonon eigenvectors, and the Greek indices �,
� refer to atomic species and Cartesian direction, respec-
tively. Using these expressions the rigid translations of the
crystal correctly yield a vanishing total shift, as required by
the Allen-Heine theory [8].

In this Letter we describe the broadening of the direct
absorption edge by using the linewidth �nk of the conduc-
tion band edge �15c [4]

�nk ¼ �
X

m;�

Z dq

�BZ

jgmn;�ðk;qÞj2

� ½ðnq� þ fmkþqÞ�ð�nk � �mkþq �!q�Þ
þ ðnq� þ 1� fmkþqÞ�ð�nk � �mkþq þ!q�Þ�; (7)

where fmkþq is the Fermi-Dirac occupation factor. Our

choice can be justified based on the following observations.
(1) The linewidth of the electronic states at the valence
band top �0

25v is vanishing as there are no available final

hole states. (2) The linewidth of the conduction band edge
�15c arising from electron-electron interactions is vanish-
ing because the energy threshold for the decay into

electron-hole pairs (corresponding to the band gap) ex-
ceeds the separation between the initial state �15c and the
lowest conduction state near X1c. The decay into plasmons
is forbidden for a similar reason. The electron-hole inter-
action is not taken into account as it does not modify
qualitatively the line shapes of the absorption edge [10,13].
We perform DFT calculations using the local density

approximation (LDA) [14,15], and account for the core-
valence interaction by using norm-conserving pseudopo-
tentials [16,17]. The electronic wave functions are
expanded in a plane wave basis [18] with a kinetic energy
cutoff of 60 Ry. The relaxed lattice parameter is 3.52 Å. We
obtain vibrational frequencies and eigenmodes, as well as
electron-phonon matrix elements, within density-
functional perturbation theory [9], using a 10� 10� 10
Brillouin-zone sampling. In order to evaluate the Brillouin
zone integral in Eq. (7) we employ the first-principles
interpolation method [4] based on maximally localized
Wannier functions [19] using 27 000 inequivalent points
in the Brillouin zone and replacing the Dirac deltas by
Lorentzians of width 10 meV.
The evaluation of the thermal shifts in Eqs. (2) and (3) is

complicated by the presence of slowly decaying energy
denominators. This problem is the same as encountered in
quasiparticle GW calculations and is a general feature of
calculating the real part of self-energy operators. Extensive
tests show that an energy cutoff of 500 eV in the denomi-
nator (300 conduction bands) is required to converge the
thermal shifts. This aspect is important because the con-
vergence of the DW term with this energy cutoff is non-
monotonic. For the thermal shifts the sampling of the
Brillouin zone plays a secondary role and the electron-
phonon interpolation of Ref. [4] is not required. In this case
we smooth the energy denominators by introducing a small
imaginary component of 100 meV following Ref. [5]. The
calculations are based on the QUANTUM ESPRESSO [20],
WANNIER90 [21], and EPW [22] codes. The Allen-Heine

theory has been implemented in a modified version of
the EPW.
In Ref. [10] the authors report spectroscopic ellipsome-

try measurements of the complex dielectric function of
diamond using synchrotron radiation in the energy region
5–10 eV. In order to extract the direct band gap and the
broadening of the absorption edge as a function of tem-
perature, the authors fit the dielectric function using ana-
lytic line shapes and extract the leading edge and its width
using first- and second-derivative analysis. The fitting pro-
cedure shows that an excitonic line shape and one based on
a two-dimensional critical point yield similar results, and
the data for the latter analysis are reported. The first- and
second-derivative analysis yield band gaps differing by a
constant shift of �60 meV, and broadening parameters
differing by �30 meV. These values can be taken as an
estimate of the experimental uncertainty. The inability to
distinguish between an interband critical point and an

FIG. 1. Electron-phonon diagrams leading to the temperature
dependence of the electron energy: self-energy diagram (left)
and Debye-Waller diagram (right). Solid and curved lines rep-
resent the electron and phonon Green’s function, respectively.
The circles in the SE diagram represent the standard electron-
phonon matrix element, the circle in the DW diagram represents
a one electron-two phonons matrix element.
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excitonic line shape indicates that, in the presence of bound
excitons, the binding energy must be smaller than the
linewidth of the absorption onset (< 150 meV). This ob-
servation is supported by first-principles calculations of the
optical absorption edge in diamond using the Bethe-
Salpeter equation, which indicate a redistribution of spec-
tral weight upon inclusion of excitonic effects, but no
sizeable shift of the absorption onset [13].

Figure 2 shows the calculated temperature dependence
of the direct band gap of diamond and compares our results
with the experimental data of Ref. [10]. The agreement
between our calculation and experiment is excellent. The
calculated magnitude of the zero-point renormalization is
extremely large and amounts to 615 meV. This value is 1 to
2 orders of magnitude larger than what is typically ex-
pected for tetrahedral semiconductors [6] and is the sig-
nature of a very strong electron-phonon interaction in
diamond. Our first-principles calculations support previous
studies [5] based on the empirical pseudopotential method
[23] which find a zero-point renormalization of
�680 meV. In order to estimate the error introduced in
our calculations by the use of the LDA eigenvalues in
Eqs. (2) and (3), we repeated our calculations by using a
scissor operator corresponding to the GW correction of the
direct band gap of diamond (2.04 eV). The zero-point
renormalization of the band gap calculated after scissor
correction is 605 meV, i.e., less than 2% smaller than the
value of 615 meVobtained in LDA.

Figure 3 shows a breakdown of the band gap renormal-
ization into SE and DW contributions. Both the SE and the
DW corrections are negative and tend to reduce the un-
perturbed band gap. The band gap renormalization is
dominated by the SE term at low temperature (81% of

the total shift at T ¼ 0 K), while the DW term becomes
relatively more important at high temperature (40% of the
total at T ¼ 700 K). The temperature dependence and the
relative importance of the SE and DW terms are in agree-
ment with the findings of Ref. [5].
The temperature dependence of the band gap can be

described approximately using a simple Bose-Einstein law

as �EgðTÞ ¼ �a½1þ 2ðe�=T � 1Þ�1� (with a and � fit-

ting parameters) [10]. By fitting our calculated shifts we
extract an effective temperature kB� ¼ 118 meV (black
solid line in Fig. 3, kB is the Boltzmann constant). This
indicates that in diamond the optical phonons provide the
main contribution to the gap renormalization, similarly to
what happens in superconducting diamond [24].
Figure 4 shows the calculated broadening of the absorp-

tion edge as a function of temperature. The large effective
phonon frequency � of diamond makes the broadening
rather insensitive to temperature, and the zero-point effect
accounts for most of the linewidth. Our calculated broad-
ening is in good agreement with the line shape analysis of
Ref. [10]. The fact that our calculations are on the upper
end of the measured broadening suggests that other broad-
ening effects due to impurities, surface scattering, or Auger
processes [10], should be of secondary importance.
We note that the good agreement between our calcula-

tions and experiment may be somewhat fortuitous since the
Allen-Heine theory does not take into account dynamical
effects, such as the dependence on the phonon frequencies
of the SE denominators in Eq. (2) or the quasiparticle
renormalization parameter Z [1]. We also point out that
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FIG. 2 (color online). Temperature dependence of the direct
band gap of diamond: calculated gap (black disks), and experi-
mental data from Ref. [10]. The calculated band gap is obtained
by adding the SE and DW thermal shifts to our GW gap EGW

g ¼
7:715 eV. TheGW gap is calculated using the method of Ref. [1]
as implemented in the BERKELEYGW code [33]. The experimen-
tal data are from the first-derivative line shape analysis of the
type IIA sample [(red) circles] and from the second-derivative
line shape analysis of the same sample [(blue) squares].
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FIG. 3 (color online). Breakdown of the temperature shift of
the direct band gap of diamond in terms of SE [(blue) dotted
line] and DW [(red) dashed line] contributions. The circles are
the total shift as in Fig. 2 and the solid black line is the fit with a
Bose-Einstein law �EgðTÞ ¼ �a½1þ 2ðe�=T � 1Þ�1�, with a ¼
615 meV and kB� ¼ 118 meV. The nonmonotonic behavior of
the SE term results from the slightly different temperature
dependence of the �0

25v and the �15c states, and from the fact

that the gap renormalization is obtained through their difference.
The different temperature dependence can be traced back to
different electron-phonon couplings in Eq. (2), and hence to the
different character of the �0

25v and �15c states in diamond.
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our electron-phonon matrix elements are obtained within
DFT, and a more accurate description of the screening may
lead to a slight modification of the quantitative aspects of
our results [25].

In the present case, the 0.6 eV electron-phonon renor-
malization of the band gap of diamond is comparable in
magnitude to the corresponding GW correction of �2 eV.
This indicates that electron-phonon effects are non-
negligible in carbon-based materials and should be consid-
ered in future band structure calculations.

The large calculated zero-point renormalization of the
band gap in diamond is consistent with the strong electron-
phonon interaction leading to superconductivity in B-
doped diamond [24,26–29] and the predicted superconduc-
tivity of graphane and diamond nanorods [30], and with the
strong electron-phonon effects observed in carbon nano-
tubes [31] and graphene [32].

With the suggestion of a move from silicon electronics to
carbon electronics, a detailed atomistic description of the
electron-phonon effects in carbonmaterials as reported here
may prove important for the development of novel device
concepts. On a more fundamental level, our work demon-
strates the truly significant role of electron-phonon renorm-
alizations on the quasiparticle excitations of diamond,
bearing important implications on many related properties.
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FIG. 4 (color online). Temperature-dependent broadening of
the direct absorption edge of diamond. The black disks are our
data calculated using Eq. (7). The (red) circles and (blue) squares
are the experimental data from the first- and second-derivative
line shape analysis of the type IIA sample in Ref. [10], respec-
tively.
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