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Combining a semiclassical analysis with exact diagonalizations, we show that the ground state of the

SU(3) Heisenberg model on the square lattice develops three-sublattice long-range order. This surprising

pattern for a bipartite lattice with only nearest-neighbor interactions is shown to be the consequence of a

subtle quantum order-by-disorder mechanism. By contrast, thermal fluctuations favor two-sublattice

configurations via entropic selection. These results are shown to extend to the cubic lattice, and

experimental implications for the Mott-insulating states of three-flavor fermionic atoms in optical lattices

are discussed.

DOI: 10.1103/PhysRevLett.105.265301 PACS numbers: 67.85.�d, 05.30.Fk, 71.10.Fd, 75.10.Jm

Mott transitions and the nature of the associated Mott-
insulating phases represent one of the central themes of
contemporary condensed matter physics [1], and more
recently also of the field of ultracold atomic gases [2].
Theoretically, the canonical case of two-flavor fermions
on hypercubic lattices is thoroughly understood. For
strong interactions, an antiferromagnetically ordered
two-sublattice Néel state is realized. Ongoing experi-
mental efforts using ultracold fermionic gases are
focused on reaching this state coming from higher tem-
peratures [3].

In an exciting parallel development, recent experimental
advances using multiflavor atomic gases [4,5] have paved
the way to the investigation of Mott-insulating states with
more than two flavors in optical lattices [6,7]. While it is
intuitively clear that Mott-insulating states will exist at
particular commensurate fillings [8,9], the nature and
the spatial structure of multiflavor Mott-insulating states
are in general not well understood. For instance, on the
square lattice geometry, many different proposals for in-
sulating states have been put forward, ranging from SUðNÞ
symmetry breaking ‘‘magnetic’’ states to dimerized or
plaquette states, chiral spin liquids and staggered flux
phases [6,10–13].

In this Letter, we present a strong case in favor of a
three-sublattice, long-range ordered ground state for the
Mott-insulating state of three-flavor (N ¼ 3) fermions with
one particle per site (1=3 filling) on the square lattice. This
is based on analytical and numerical investigations of the
strong coupling limit U � t of the SU(3) symmetric
Hubbard model defined by the Hamiltonian

H ¼ �t
X
hi;ji;�

ðcyi;�cj;� þ H:c:Þ þU
X

i;�<�

ni;�ni;�: (1)

Here cyi;� and ci;� create and annihilate a fermion at site i

with flavor �, respectively, and ni;� ¼ cyi;�ci;�. To second

order in t=U, the low-energy physics is captured by the
SU(3) antiferromagnetic Heisenberg model with coupling
J ¼ 2t2=U

H ¼ J
X
hi;ji

P ij; (2)

where P ij is a transposition operator that exchanges SU(3)

spins on site i and j: P ijj�i�ji ¼ j�i�ji. The spins on a

site form the three-dimensional fundamental irreducible
representation of the SU(3) algebra. In the following, the
basis states will be denoted by jAi, jBi, and jCi. Note that
this model can also be seen as a special high-symmetry
point of the SU(2) spin-one, bilinear-biquadratic exchange
Hamiltonian when bilinear and biquadratic couplings
are equal.
In one dimension, the model has a Bethe ansatz solution

[14]. It has gapless excitations at q ¼ 0 and q ¼ �2�=3
[15], and the correlations decay algebraically with
period 3. In higher dimensions, much less is known, and
most of it relies on the pioneering work of Papanicolaou
[16] who has investigated this question variationally in the
context of spin-one models using a site-factorized wave
function of the form

j�i ¼ YN�

i¼1

ðdA;ijAii þ dB;ijBii þ dC;ijCiiÞ; (3)

where N� is the number of sites. Grouping the variational
parameters into (complex) vectors di ¼ ðdA;i; dB;i; dC;iÞ
and imposing the normalization di � �di ¼ 1, the problem
reduces to the minimization of

Evar ¼ h�jH j�i
h�j�i ¼ J

X
hi;ji

jdi � �djj2: (4)

Since J > 0, the energy of nearest-neighbor bonds is mini-
mal when the d vectors, hence the wave functions, are
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orthogonal. For a triangle, this condition enforces three
mutually orthogonal d vectors. As a consequence, for the
triangular lattice, the energy is minimized up to global
SU(3) rotations by a single wave function constructed by
choosing on each of the three sublattices the wave func-
tions jAi, jBi, and jCi, respectively. The three-sublattice
long-range order embodied by this wave function has
recently been shown to be stable against quantum fluctua-
tions [17].

By contrast, the square lattice does not provide enough
constraints to uniquely select a set of mutually orthogonal
d vectors. Consider, for instance, a Néel state with jAi and
jBi on the two sublattices. Any state obtained by replacing
jBi by jCi on an arbitrary number of sites is also a ground
state, which leads to a highly degenerate ground-state
manifold. This situation is reminiscent of frustrated
SU(2) antiferromagnetism, in which case quantum or
thermal fluctuations often restore long-range order by a
selection mechanism that favors collinear or planar con-
figurations and is known as ‘‘order-by-disorder’’ [18]. For
the SU(3) model, zero-point quantum fluctuations can be
calculated with the help of the flavor-wave theory, an
extension of the SU(2) spin-wave theory to the SU(3)
case [16,19]. This approach starts from the representation
of the model in terms of three-flavor Schwinger bosons

P ij ¼
X

�;�2fA;B;Cg
ay�;ia

y
�;ja�;ia�;j; (5)

with the constraint
P

�a
y
�;ia�;i ¼ 1. In order to treat quan-

tum fluctuations around a variational solution defined
by dj, one first performs a local SU(3) rotation of the

Schwinger bosons by choosing two vectors ej and fj
which, together with dj, define a local orthogonal basis,

in terms of which the rotated bosons are given as ~ayA;j ¼P
�d�;ja

y
�;j, ~ayB;j ¼

P
�e�;ja

y
�;j, and ~ayC;j ¼

P
�f�;ja

y
�;j.

A ‘‘semiclassical’’ 1=M expansion is then generated

by replacing the constraint by
P

�a
y
�;ia�;i ¼ M and the

Schwinger bosons along the local direction of the varia-
tional solution by

~a y
A;i; ~aA;i !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� ~ayB;i~aB;i � ~ayC;i~aC;i

q
: (6)

The bosons ~aB;i and ~aC;i play the role of Holstein-

Primakoff bosons. Expanding in powers of 1=M leads to

P ij ¼Mðdj �Ay
i þ �di �AjÞð �dj �Ai þ di �Ay

j Þ �M (7)

with Ai ¼ ei~aB;i þ fi~aC;i. The resulting Hamiltonian is

quadratic and can be diagonalized by a Bogoliubov trans-
formation. The zero-point energy is half the sum of the
eigenfrequencies.

Now, simple considerations lead to two natural candi-
dates for possible orderings: (i) the two-sublattice state
with ordering wave vector Q2 ¼ ð�;�Þ, as suggested by
the bipartite nature of the lattice, and (ii) a three-sublattice
state with ordering wave vector Q�

3 ¼ ð2�=3;�2�=3Þ, as
suggested by the softening of the excitation spectrum in

one-dimensional chains. Both states feature diagonal
stripes of equal spins, with an alternation of A and B stripes
in case (i) and a succession of A, B, and C stripes in
case (ii) [see Fig. 1]. For such states, the excitation spec-
trum has the periodicity of the square lattice, leading to

H ¼ �2MJN� þM
X2
�¼1

X
k

!�ðkÞ
�
�y
�ðkÞ��ðkÞ þ 1

2

�
:

(8)

The spectrum consists of two branches because there are
two states orthogonal to the local variational state. For the
three-sublattice state, the branches are degenerate

!1;2ðkÞ ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�kj2

q
; (9)

while for the two-sublattice case they are given by

!1ðkÞ ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ð�k þ ��kÞ2

q
; !2ðkÞ ¼ 0; (10)

with �k ¼ ðeikx þ eikyÞ=2. The corresponding spectra are
shown in Figs. 2(a) and 2(c), respectively.
In both cases, there is an infinite number of zero modes.

For the two-sublattice case, the presence of an entirely soft
branch is natural: if the two-sublattice variational state
corresponds, say, to A and B spins, each spin can tilt toward
C at no energy cost. What is more surprising is the line of
zero modes in the three-sublattice case, since one would
naively expect zero modes only at k ¼ 0, �Q�

3 . This

suggests that there must be a family of classical ground
states with wave vectors (q, �q). Indeed, after choosing
the vectors dl and dlþ1 of two consecutive stripes, we may
write the next one as dlþ2 ¼ cos�dl þ sin�dl � �dlþ1. If
we continue this construction using always the same �,
we end up with a helical state of the form jc ii /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� cosq
p jui þ sinqðxi þ yiÞjvi þ cosqðxi þ yiÞjwi with

cos� ¼ �1� 2 cosq and �=2< q< �, where jui, jvi,
jwi depend on the initial choice of dl and dlþ1. These
helical states extrapolate between the two-sublattice case
(q ¼ �=2 and q ¼ �) and the three-sublattice case
(q ¼ 2�=3). Their excitations have the periodicity of the
lattice, and the dispersion is given by the equation (ex-
tended to dimension D for later reference)

!4 �D2J2½2ð1� �k ��kÞ þ ð2� �2
k � ��2

kÞcos2��!2

þD4J4sin4�ð1� �k ��kÞ2 ¼ 0; (11)

(b)(a)

FIG. 1 (color online). Sketch of the (a) three-sublattice and
(b) two-sublattice phases of the SU(3) antiferromagnetic
Heisenberg model.
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where �k ¼ ðeikx þ eiky þ . . .Þ=D. All helical states give
rise to a line of zero modes.

We see, therefore, that there is in fact an infinite number
of helical candidates for being the quantum ground state.
We have calculated and compared the zero-point energy of
these states [Fig. 2], and found that it is minimal for q ¼
2�=3. We have also compared the zero-point energy of the
three-sublattice state with that of random ground states on
finite clusters, as well as with that of stripe states with
lower periodicity, with the conclusion that it is always
lower. This leads to the first important conclusion of this
paper: on the square lattice, quantum fluctuations stabilize
three-sublattice long-range order.

This conclusion is quite surprising from the point of
view of order-by-disorder. Indeed, the two-sublattice state
has by far the largest number of zero modes, and according
to common wisdom it should be selected. However, this
need not be the case for quantum fluctuations: if the non-
zero modes have sufficiently large energy, they may com-
pensate for the vanishing contribution of the zero modes.
This is what happens here for the two-sublattice structure,
whose upper branch is larger than twice the degenerate
three-sublattice branch for all wave vectors. By contrast,
for thermal fluctuations, the stabilization of the configura-
tion with the largest number of zero modes is systematic,
since the low-temperature free energy reads [20]

F ¼ E0 � NZM

4
T lnT � NM � NZM

2
T lnT; (12)

where NM is the total number of modes and NZM is the
number of zero modes. The classical spectrum has four
branches given by

�2 �DJ½2� cos�ð�k þ ��kÞ��
þD2J2sin2�ð1� �k ��kÞ ¼ 0: (13)

Similarly to the SU(2) case, the classical and quantum
spectra are different but related, and in dimension D � 2,
the proportion of zero modes is the same. This analysis
predicts therefore that thermal fluctuations stabilize
the two-sublattice state, in agreement with classical
Monte Carlo simulations [21].

Next, we compare these predictions with exact diago-
nalizations of the Hamiltonian of Eq. (2) on finite clusters.
The energy per site for square samples of up to 20 sites is

shown in Fig. 3(a). It is significantly smaller for the
samples whose number of sites is a multiple of 3 (9 and
18), providing evidence in favor of a three-sublattice
symmetry breaking. To check if the continuous SU(3)
symmetry is also broken, we have plotted in Fig. 3(b) the
energy levels as a function of the quadratic Casimir opera-
tor C2 of SU(3), keeping track of the irreducible represen-
tations (IRs) of the space group symmetry. In the case of
the continuous symmetry breaking, one expects the low-
energy part of the spectrum to align linearly as a function
ofC2, giving rise to a tower of states [22,23]. This is clearly
the case in Fig. 3(b), as highlighted by the dashed line. This
tower of states can be thought of as a combination of two
towers corresponding to the two possible propagation vec-
tors (Q�

3 ), which results in the finite-size splitting of some

levels (e.g., �A1 and �B2), as well as the increased degen-
eracy of some IRs (e.g. W). Note also that the tower
is not as well separated from other states as in other
systems [22], a consequence of the order-by-disorder
selection mechanism that leads to low-lying excitations
associated to other mean-field solutions. The structure of
the energy spectrum further indicates that the state with an
equal population of the SU(3) basis states is stable with
respect to the occurrence of spontaneous population
imbalance or phase separation. Finally, an inspection of
the real-space correlation functions of the 18-site sample
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FIG. 2 (color online). Flavor-wave dispersions of (a) the three-sublattice state, (b) the helical state with cos� ¼ 0:4, and (c) the
two-sublattice state. (d) Zero-point energy per site, "ZP ¼ ð1=N�Þ

P
k;�!�ðkÞ=2, as a function of the wave vector (q, �q) of the helix.

The minimum is located at q ¼ 2�=3 in both two and three dimensions.
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FIG. 3 (color online). (a) Energy per site from exact diagonal-
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flavor-wave (FW) result. (b) Tower of states for 18 sites. �
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A2 one-dimensional and E1 two-dimensional IRs, while W is a
four-dimensional IR with wave vectors (� 2�=3, �2�=3).
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allows for a rough estimate of the ordered moment of about
60%–70% of the saturation value. Long-wavelength fluc-
tuations on larger systems might further reduce this value,
but with such a large value on 18 sites, we expect the order
to survive in the thermodynamic limit. Note that, due to
zero modes, estimating the ordered moment within a
flavor-wave theory would require pushing the expansion
beyond linear order. So altogether, exact diagonalizations
provide very clear evidence in favor of the three-sublattice
flavor-wave state.

Let us now briefly discuss the experimental implications
of these results. Reaching sufficiently low temperatures is
currently a major challenge in ultracold atomic systems:
interestingly, the exchange integral of the SUðNÞ case is
equal to 2t2=U, independently of N. It is thus realistic to
expect that the exchange scale can be reached for SUðNÞ
fermions as soon as it is reached for SU(2) ones. In that
respect, it will be important in experiments to carefully
choose the optimal coupling strengthU=t, which should be
large enough to put the system into the Mott-insulating
phase, but not too large to lead to accessible values of the
energy scale set by the exchange integral.

Next, we note that the conclusions regarding the selec-
tion by quantum or thermal fluctuations for SU(3) fermions
are actually valid in any dimension D � 2, as can be
checked easily from Eqs. (11) and (13). So the present
results allow us to make predictions both for the square and
cubic lattices, and the competition between quantum and
thermal order-by-disorder should lead to a rather rich
physics. In both 2D and 3D, the system should first develop
two-sublattice ordering tendencies as it is cooled below the
exchange scale. In two dimensions, we expect the system
to undergo a finite temperature transition at lower tempera-
tures into a directionally ordered state (selection between
the two independentQ�

3 spiral propagation vectors), and to

reach a three-sublattice ordered state at zero temperature.
In three dimensions, however, a finite temperature transi-
tion into a two-sublattice ordered state is in principle
possible, leading to two possible scenarios: upon lowering
the temperature, the system might first undergo a transition
into a two-sublattice ordered state, which is followed
by a second transition into the three-sublattice ordered
state selected by quantum fluctuations. Alternatively, it
could undergo a direct first-order transition from the para-
magnetic into the three-sublattice ordered state. High-
temperature series expansion of the SUðNÞ case on the
3D cubic lattice seems to favor the second possibility [24].

Finally, the detection of the three-sublattice order
might be attempted using noise correlations [25], since
the structure factor is expected to have a peak at Q�

3 .

Alternatively, a recent report of single atom resolution
experiments [26] suggests that direct imaging might be
possible provided that some contrast can be achieved
between different atomic species.
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[3] R. Jördens et al., Nature (London) 455, 204 (2008);
U. Schneider et al., Science 322, 1520 (2008).

[4] T. B. Ottenstein et al., Phys. Rev. Lett. 101, 203202
(2008); J. H. Huckans et al., Phys. Rev. Lett. 102,
165302 (2009).

[5] S. Stellmer et al., Phys. Rev. Lett. 103, 200401 (2009);
Y. N. Martinez de Escobar et al., Phys. Rev. Lett. 103,
200402 (2009).

[6] C. Honerkamp and W. Hofstetter, Phys. Rev. Lett. 92,
170403 (2004); C. Wu, Mod. Phys. Lett. B 20, 1707
(2006); M. Hermele, V. Gurarie, and A.M. Rey, Phys.
Rev. Lett. 103, 135301 (2009).

[7] M.A. Cazalilla, A. F. Ho, and M. Ueda, New J. Phys. 11,
103033 (2009); A.V. Gorshkov et al., Nature Phys. 6, 289
(2010).

[8] E. V. Gorelik and N. Blümer, Phys. Rev. A 80, 051602
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