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The dimensionality of turbulence in fluid layers determines their properties. We study electromagneti-

cally driven flows in finite-depth fluid layers and show that eddy viscosity, which appears as a result of

three-dimensional motions, leads to increased bottom damping. The anomaly coefficient, which character-

izes the deviation of damping from the one derived using a quasi-two-dimensional model, can be used as a

measure of the flow dimensionality. Experiments in turbulent layers show that when the anomaly

coefficient becomes high, the turbulent inverse energy cascade is suppressed. In the opposite limit

turbulence can self-organize into a coherent flow.
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Fluid layers represent a broad class of flows whose
depths are much smaller than their horizontal extents, for
example, planetary atmospheres and oceans. The discovery
of the upscale energy transfer in 2D turbulence [1] gave
new insight into the energy balance in turbulent layers. The
inverse cascade transfers energy from smaller to larger
scales, thus allowing for turbulence self-organization.
This is in contrast with 3D turbulence where energy is
nonlinearly transferred towards small scales (direct
cascade).

Real physical layers differ from the ideal 2D model
since they have finite depths and nonzero dissipation.
The effect of the layer thickness on turbulence driven by
2D forcing has been studied in 3D numerical simulations
[2,3]. It has been shown that in ‘‘turbulence in more than
two and less than three dimensions,’’ the injected energy
flux splits between the direct and inverse parts. At ratios of
the layer depth h over the forcing scale lf above h=lf � 0:5

the inverse energy cascade is greatly reduced. When the
inverse energy flux is suppressed, the energy injected into
the flow is transferred towards small scales by the direct

cascade, developing the Kolmogorov k�5=3 spectrum at
k > kf. This result illustrates that 2D and 3D turbulence

may coexist.
Two-dimensional and three-dimensional effects have

been studied in electromagnetically driven flows using
two main schemes to force the fluid motion. In liquid
metals placed in a vertical homogeneous magnetic field,
the flow is forced by applying spatially varying electric
field which generates J � B forces. In such MHD flows 2D
properties are enforced by the magnetic field and the 3D
behavior is restricted to a very thin Hartmann layer [4,5].
The deviations from 2D in such flows may be due, for
example, to the finite resistivity in thick layers [6,7].
Another class of experiments employs spatially periodic
magnetic field crossed with the constant horizontal electric
current to produce interacting vortices [8–10]. In this case
the thickness of the Hartmann layer exceeds the layer depth
and 2D and 3D effects are determined by factors which are

different from those in MHD flows, for example, density
stratification. Such flows are considered here.
Three-dimensional effects are closely related to the

energy dissipation within the layers. This connection, how-
ever, is not fully understood in experiments. The measured
flow damping rates are often compared with those derived
from a quasi-2D model [11,12], which assumes no vertical
motions within the layer. In thin layers, the agreement is
usually within a factor of 2 [9,13]. However, in some
experiments a much better agreement with the quasi-2D
model was observed [14]. This contradicts recent claims
about the intrinsic three dimensionality of the flows in thin
layers of electrolytes [15,16]. There is a need to clarify this.
Physical three dimensionality of the flow is determined

by the amount of 3D motion in the layer. This motion may
naturally develop in the layer, as in [3], but it can also be
injected into the flow by non-2D forcing, or can be gen-
erated by the shear-driven instabilities in the boundary
layer. In this case, the critical layer thickness cannot be
used as a practical criterion of the 2D-3D transition since it
will vary depending on the source of 3D motion. The
transition from 2D to 3D, which marks a fundamental
change in the energy transfer, needs to be characterized
quantitatively; in other words, it is necessary to find a
measure of the flow dimensionality which would help to
predict turbulence behavior.
In this Letter we show that eddy viscosity increases

damping in finite-depth fluid layers compared with the
quasi-2D model prediction. This increase can be used as
the measure of the flow dimensionality. We show that the
increased degree of three dimensionality leads to the sup-
pression of the inverse energy cascade.
In these experiments turbulence is generated via the

interaction of a large number of electromagnetically driven
vortices [10,17,18]. The electric current flowing through a
conducting fluid layer interacts with the spatially variable
vertical magnetic field produced by arrays of magnets
placed under the bottom. In this Letter we use a 30� 30
array of magnetic dipoles (8 mm separation) for the
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turbulence studies requiring large statistics. For the studies
of vertical motions, a 6� 6 array of larger magnets
(25 mm separation) is used. The flow is visualized using
seeding particles, which are suspended in the fluid, illumi-
nated using a horizontal laser slab and filmed from above.
Particle image velocimetry (PIV) is used to derive turbu-
lent velocity fields. The flow is generated either in a single
layer of electrolyte (Na2SO4 water solution) or in two
immiscible layers of fluids (electrically neutral heavier
liquid at the bottom, electrolyte on top). Shortly after the
current is switched on, J � B driven vortices interact with
each other forming complex turbulent motion character-
ized by a broad wave number spectrum. The steady state is
reached within tens of seconds.

To study vertical motions in single electrolyte layers,
vertical laser slabs are used to illuminate the flow in the y-z
plane. Streaks of the seeding particles within the slab are
filmed with the exposure time of 1 s. Quantitative mea-
surements of the horizontal and vertical velocities are
performed using defocusing PIV technique. This technique
was first described in [19], but had never been used in
turbulence studies. It allows measurements of 3D velocity
components of seeding particles using a single camera with
a multiple pinhole mask (three pinholes constituting a
triangle are used here). A schematic of the method is
shown in Fig. 1(a). An image of a particle placed in the
reference plane at z ¼ 0 (where the particle is in focus)
corresponds to a single dot in the image plane. As the
particle moves vertically away from the reference plane,
the light passes through each pinhole in the mask and

reaches three different positions on the image plane. The
distances between the triangle vertices in the image plane
are used to decode z positions of the particles. The xy
components of velocity are determined using a PIV-PTV
(particle tracking velocimetry) hybrid algorithm to match
particle pairs from frame to frame. This process is illus-
trated in Fig. 1(b). The technique allows one to resolve
vertical velocities hVzirms � 0:5 mm=s. The imaged area in
this experiment is 50� 50 mm2. On average about 50
particles (triangles) are tracked in two consecutive frames.
Derived velocities are then averaged over about 100 of the
frame pairs to generate converged statistics of the mean-
square-root velocities hVx;y;zirms.

Figures 2(a)–2(c) show particle streaks and correspond-
ing vertical velocity profiles VzðzÞ for different layer
depths. To keep forcing approximately constant, the
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FIG. 1 (color online). (a) Schematic of the defocusing particle
image velocimetry technique, and (b) a fragment of 2 super-
imposed consecutive frames.
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FIG. 2 (color online). Particle streaks filmed with an exposure
time of 1 s (top panels) and the distribution of the vertical
velocity fluctuations (rms) over the layer thickness (bottom
panels) in single layers: (a) h ¼ 5 mm, (b) h ¼ 15 mm,
(c) h ¼ 20 mm. (d) Ratio of rms vertical to the rms horizontal
velocity as a function of the normalized layer thickness h=lf in a

single (open circles) and in a double (solid squares) layer
configurations. (e) �t=�L versus h=lf.
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electric current is increased proportionally to the layer
thickness (constant current density). For the layer thick-
nesses of up to 30 mm, a range of h=lf ¼ 0:2–1:2 is

achieved. Particle streaks show reasonably 2D motion in
a thin (5 mm) layer, Fig. 2(a). Vertical velocity is small
over most of the layer thickness and is close to the resolu-
tion of the technique, hVzirms � 0:5 mm=s. As the layer
thickness is increased, 3D motions develop. The corre-
sponding vertical velocities increase up to �4 mm=s,
Figs. 2(b) and 2(c). Figure 2(d) shows the ratio of vertical
to horizontal velocities as a function of the normalized
layer thickness. In single layers this ratio increases ap-
proximately linearly with h=lf reaching over hVzi=hVx;yi ¼
0:3 at h=lf ¼ 0:8. In stratified double layers this ratio is

substantially smaller, hVzi=hVx;yi � 0:08 [solid squares in

Fig. 2(d)], suggesting that the flow in a double layer
configuration is much closer to 2D.

In the absence of 3D motions, the flow in the layer is
damped due to molecular viscosity. A decay of horizontal
velocity Vx;yðz; tÞ in a quasi-2D flow due to the bottom

friction is described by the diffusive type equation
@Vx;y=@t ¼ �@2Vx;y=@z

2, which together with the bound-

ary conditions Vx;yðz ¼ 0; tÞ ¼ 0 and @Vx;yðz ¼ h; tÞ=@z ¼
0 gives the characteristic inverse time of the energy decay,
e.g., [11]:

�L ¼ ��2=2h2: (1)

Here � is the kinematic viscosity.
The onset of 3D turbulent eddies in thicker layers should

lead to a vertical flux of horizontal momentum and faster
dissipation of the flow. Such a flux is related to the mean
vertical velocity gradient @Vx;y=@z [20]:

h ~Vx;y
~Vzi ¼ �K

@Vx;y

@z
: (2)

Here K is the eddy (turbulent) viscosity coefficient. By
assuming that fluctuations of vertical and horizontal veloc-
ities are well correlated, we can estimate the eddy viscosity
coefficient using the defocusing PIV data as K � h ~Vx;yi�
h ~Vzið@Vx;y=@zÞ�1. Then the damping rate can be estimated

using the contribution of both molecular and the eddy
viscosities, �t ¼ ð�þ KÞ�2=2h2. The ratio of thus calcu-
lated damping rate to the linear damping �L, Eq. (1), is
shown in Fig. 2(e).

The damping should become anomalous (�t=�L > 1)
above some critical layer thickness. According to Fig. 2(e)
this anomaly should increase linearly with the increase
in h=lf.

Direct measurements of damping were performed to test
that eddy viscosity increases the dissipation above its
quasi-2D value, Eq. (1), in layers thicker than h=lf >

0:2. The bottom drag is derived from the energy decay
of the steady flow. After forcing is switched off, the
mean flow energy exponentially decays in time with a

characteristic time constant �, as shown in Fig. 3(a). We
compare the energy damping rate measured in a single
layer of different depths with the linear damping rate.
Figure 3(b) shows the anomaly coefficient aD ¼ �=�L as
a function of the normalized layer thickness h=lf. In the

thinnest layer (h � 1:7 mm, h=lf � 0:21) the damping

rate coincides with the linear damping rate Eq. (1).
However, for thicker layers the damping anomaly is higher,
such that aD increases linearly with h reaching aD ¼ 6 at
h=lf ¼ 1:25.

Measurements of the damping show that the anomaly
coefficient aD in Fig. 3(b) agrees very well with the anom-
aly estimated using the eddy viscosity derived from
Eq. (2), Fig. 2(e). In the double layer experiments however,
aD is substantially lower, as shown by the solid squares in
Fig. 3(b). This is not surprising in light of the result of
Fig. 2(d) (solid squares), which shows substantially less 3D
motion in double layers.
The above results are related to low forcing levels, when

3D eddies are generated due to the finite layer thickness, as
in [3]. However, electromagnetic forcing, which is maxi-
mum near the bottom in the single layer experiments
(magnets underneath the fluid cell), may inject 3D eddies
into the flow from the bottom boundary layer at higher
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FIG. 3 (color online). (a) Decay of the flow energy in a single
layer, h ¼ 10 mm, (b) energy damping rate normalized by the
viscous quasi-2D damping rate aD ¼ �=�L, as a function of
h=lf. Open circles refer to single layers, solid squares were

obtained in the double layer configurations. (c) The damping
anomaly coefficient aD versus h=lf for the case of a strong large-

scale vortex (100 mm diameter, Vmax
x;y ¼ 16 mm=s).
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forcing levels. Figure 3(c) shows the damping anomaly
coefficient aD measured in the flow driven by a single
strong large magnetic dipole. A single large-scale vortex
is produced, whose diameter is �100 mm and the maxi-
mum horizontal velocity is�16 mm=s. As the layer thick-
ness is increased from 2 to 10 mm (h=lf ¼ 0:02–0:1) while

keeping the current density constant, the anomaly coeffi-
cient increases up to aD ¼ 3:6 due to the increase in the
vertical velocity fluctuations. Thus, turbulent bottom drag
may also occur in relatively thin layers at stronger forcing.

We now test if the increased three dimensionality, as
characterized by aD, leads to the suppression of the inverse
energy cascade. The inverse energy cascade can be de-
tected by measuring the third-order structure function S3
and by using the Kolmogorov flux relation which predicts
linear dependence of S3 on the separation distance l, S3 �
�l. Here � is the energy flux in k space. It has been shown
that in thin stratified layers S3 is positive and it is a linear
function of l, as expected for 2D turbulence [10]. Figure 4
shows third-order structure functions measured in a single
layer of electrolyte for two layer depths, h ¼ 3 and 10 mm.
In the 3 mm layer, S3 is a positive linear function of l, while
in the 10 mm layer S3 is much smaller, indicating very low
energy flux in the inverse energy cascade. The damping
anomaly in the 3 mm layer is aD � 2, while for the 10 mm
layer it is high, aD � 5. Since in this experiment, the
forcing is 2D and it is relatively weak (no secondary
instabilities in the boundary layer), this result is in agree-
ment with numerical simulations [3] which show strong
suppression of the inverse energy cascade above h=lf �
0:5. The 3 mm layer corresponds to h=lf � 0:38, while for

the 10 mm layer h=lf � 1:25. However, we do not observe

any signatures of the direct energy cascade range, Ek /
k�5=3 at k > kf in the 10 mm layer. Instead, the spectrum

is much steeper than the usual k�3 enstrophy range. This is
probably due to the fact that the Reynolds number in this

experiment is not sufficient to sustain 3D direct turbulent
cascade.
Summarizing, we demonstrate for the first time that

increased three dimensionality of flows in layers can be
characterized by the anomalous damping coefficient aD.
We show that the increase in aD correlates with the sup-
pression of the inverse energy cascade. On the other hand,
a strong reduction in aD, which can be achieved in the
double layer configuration, correlates well with the obser-
vation of the inverse energy cascade and spectral conden-
sation of turbulence into a flow coherent over the entire
domain [8,10,17].
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