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We report a first-principles study of static transport of localized waves in quasi-one-dimensional open

media. We find that such transport, dominated by disorder-induced resonant transmissions, displays novel

diffusive behavior. Our analytical predictions are entirely confirmed by numerical simulations. We show

that the prevailing self-consistent localization theory [B.A. van Tiggelen et al., Phys. Rev. Lett. 84, 4333

(2000)] is valid only if disorder-induced resonant transmissions are negligible. Our findings open a new

direction in the study of Anderson localization in open media.
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Introduction.—In the past years experimental studies of
localization have been boosted due to the unprecedented
level of manipulating ultracold atomic gases [1], dielectric
materials [2–7], and elastic media [8]. A key feature shared
by many experimental setups [5–9] is that, to facilitate
measurements, wave energies leak out of systems through
boundaries. Consequently, wave interferences interplay
strongly with the wave energy leakage that, conceptually,
enriches transport phenomena of localized waves while,
technically, it pushes forward developments of theoretical
approaches. In particular, as a unique property of finite-sized
samples, localized states in the sample center create resonant
transmissions [10,11]. Although these transmissions are rare
events, nevertheless, they contribute significantly to average
transmission. In fact, random matrix theory predicts that in
quasi-one-dimension (quasi-1D) the localization lengthmea-
sured from average transmission can be 4 times larger than
that measured from typical transmission [12]. Recently,
disorder-induced resonant transmissions have found consid-
erable practical applications. For example, they mimic
a ‘‘resonator’’ with high-quality factors and thus are
used to fabricate random laser [13] and to realize optical
bistability [14].

However, to study this intriguing interplay has proved to
be, in general, a formidable task. Confronting this chal-
lenge, a decade ago van Tiggelen, Lagendijk, and Wiersma
hypothesized [15] a so-called self-consistent local diffu-
sion (SCLD) model for localization in open media (for a
review, see Ref. [16]). They phenomenologically general-
ized the self-consistent localization theory of infinite media
[16] by demanding the diffusion coefficient to be position
dependent so as to take boundary effects into account. The
SCLD model (as well as its dynamic generalization
[8,17]), having the advantages of physical transparency
and methodological simplicity over other approaches, is
guiding considerable experimental and theoretical activ-
ities (e.g., Refs. [7,8,18]). Yet, the validity of the SCLD
model inside localized samples is largely unknown and,
in fact, has been severely questioned by recent pulsed

microwave experiments [7]. There it was shown that the
(dynamic) SCLD model [17] fails to describe transport in
quasi-1D localized samples at long times, when energies
are mainly stored in long-lived modes. The dramatic dis-
crepancy [7] between experimental measurements and
theoretical predictions is conveying an opinion. That is,
the highly nonlocal object of disorder-induced resonant
transmission [10], which plays a decisive role in transport
of localized waves [11], may not be captured by such a
model.
Motivated by these activities, we performed a first-

principles study of static wave transport in quasi-1D local-
ized samples, i.e., L � � with L and � the sample and
localization length, respectively. We predicted analytically
and confirmed numerically that, in these systems, localized
waves display a novel diffusion phenomenon. Our theory
shows that the SCLD model is valid only if disorder-
induced resonant transmissions are negligible. Our find-
ings, capable of being generalized to higher dimensions,
may open a new direction in the study of Anderson local-
ization in open media.
Main results and qualitative discussions.—We placed a

source at x0 and considered the average wave intensity at x
(x; x0 are measured from given boundary), denoted as
Yðx; x0Þ. Our first-principles analytic theory, justifying the
static local diffusion equation, �@xDðxÞ@xYðx; x0Þ ¼
�ðx� x0Þ, leads to the following central results. (i) The local
(or position-dependent) diffusion coefficient DðxÞ displays
a novel scaling behavior. Specifically,DðxÞ depends on xvia
the scaling � ¼ ðL� xÞx=ðL�Þ [D0 ¼ Dð0Þ],

DðxÞ=D0 ¼ D1ð�Þ; (1)

and the scaling function D1ð�Þ is �e�� for � ! 1.
(ii) From (i) it follows that inside the sample, surprisingly,
DðxÞ is enhanced drastically from the exponential decay,

DðxÞ=D0 / ex
2=ðL�Þe�x=�; � � x � L=2 (2)

[DðxÞ ¼ DðL� xÞ]. (iii) Equations (1) and (2) are universal
regardless of the time-reversal symmetry. Our results, while

PRL 105, 263905 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

0031-9007=10=105(26)=263905(4) 263905-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.84.4333
http://dx.doi.org/10.1103/PhysRevLett.84.4333
http://dx.doi.org/10.1103/PhysRevLett.105.263905


entirely confirmed by simulations (Fig. 1), show that the
SCLD model fails in localized samples.

Let us first present qualitative explanations of the main
results (i)–(iii). The scaling behavior, Eq. (1), finds its origin
in wave interferences. Indeed, as waves penetrate into a
time-reversal medium, they may counterpropagate along
the same loop and interfere with each other—the well-
known weak localization [19]. However, different from
infinite media, in open media, wave energies leak out
through the boundaries and, as such, the probability (in the
frequency domain) of forming a loop is finite in the static
limit, which is / ðL� xÞx=L in quasi-1D. Then, a one-loop
wave interference correction to D0 results, which is x
dependent and of the order of � ¼ ðL� xÞx=ðL�Þ.
Furthermore, because � monotonically decreases from the
sample midpoint to boundaries, as waves propagate towards
the sample center, the propagation paths tend to form more
(say, n) loops with a probability / ½ðL� xÞx=L�n, leading
to a wave interference correction��n. Thus, wave interfer-
ences everywhere render DðxÞ depending on x via �.

That the scaling behavior of local diffusion is far beyond
the reach of the SCLD model is best appreciated by broken
time-reversal systems (unitary symmetry). There, the above
one-loop wave interference is absent and, therefore, the
SCLD model ceases to work. [Indeed, for � ! 0, the linear
term in the � expansion ofD1ð�Þ now disappears.] Instead,
two paths may take the same route, propagate in the same
direction, but visit individual scatterers at different times. As
such, they form loops and equally contribute wave interfer-
ence corrections to D0. The perturbative � expansion is
thereby justified, with the leading order correction ��2.

Having explained Eq. (1), let us estimate the asymptotic
form of D1ð�Þ at � ! 1. To this end we enjoy the
universality of D1ð�Þ and set L ! 1 (semi-infinite
media). In this simple case, on physical grounds, we expect

DðxÞ=D0 ¼ D1ð�Þ � e�x=� for x � �. Because of

� ¼ x=�, we find D1ð�Þ � e�� for � � 1. This asymp-
totic form then gives Eq. (2) for finite-sized samples.
Importantly, the significant enhancement from the expo-
nential decay is related to the fluctuation of the inverse
localization length � in finite-sized samples. Indeed, for
L � �, the distribution of � is Gaussian, with the average
and variance being ��1 and 2=ð�LÞ, respectively [12,20].
Averaging e��x, we obtainedZ 1

0
d�e��xe�ð�L=4Þð����1Þ2 �DðxÞ (3)

for x deep inside the sample.
Failure of SCLD model.—For simplicity we focus on

classical scalar waves, and begin with testing the validity
of the SCLD model [15]. We performed numerical simula-
tions of the spatially resolved wave intensity across a ran-
domly layered medium, which is embedded in an air
background and excited by a plane wave of (angular) fre-
quency !. The layer thickness is a, and the relative permit-
tivity at each layer fluctuates independently, with a uniform
distribution in the interval ½1� �; 1þ ��. Here�measures
the degree of randomness of the system, and throughout
this work we considered nonreflecting boundaries. We
set � ¼ 0:7 and considered two wave frequencies, ! ¼
1:65c=a and 0:72c=a, where c is the speed of light in air.
We used the standard transfer matrix method to calculate the
transmission coefficient T� and wave intensity distribution

I�ðxÞ for each configuration �. For each !, we calculated

the ensemble-averaged current j � hT�i and wave intensity
distribution IðxÞ � hI�ðxÞi of 2 000000 realizations of di-

electric disorders for different sample lengths. Since the
current across the sample is uniform due to the conservation
law, we used the relation j ¼ �DðxÞ@xIðxÞ to computeDðxÞ
by presuming the static local diffusion equation.
In Fig. 1 the results of DðxÞ=D0 obtained by simulations

and by numerically solving the SCLDmodel are presented.
First of all, they both show that DðxÞ tends to decay
exponentially from the boundary in the limit L ! 1 (dot-
ted line). The decay length (the localization length) �
was found to be the transport mean free path, which is
21a (50a) for ! ¼ 1:65c=a (0:72c=a). We therefore re-
scale x into x=� and present results for five different
sample lengths, L=� ¼ 2:5, 5, 10, 15, and 20. We see
that for different frequencies the simulation results
(squares and circles) overlap, signaling the scaling behav-
ior independent of the parameters of random media. It is
obvious that, except near the boundaries, the results from
simulation are significantly larger than those from the
SCLD model (dashed lines). The deviation is prominent
for large L=�, where the results from the SCLD model
converge to the sum of two truncated exponentials, decay-
ing from their respective boundaries. Does localized waves
in open media display diffusive transport? Our analytical
prediction below provides a definitive answer to this con-
ceptually important question. In particular, the analytical
result of DðxÞ=D0, Eq. (2), is in excellent agreement with
numerical simulations (solid lines).
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FIG. 1 (color online). Comparing results obtained from nu-
merical simulations, the analytical prediction (2) (solid lines)
and the SCLD model (dashed lines). DðxÞ=D0 was computed
numerically for two wave frequencies, ! ¼ 1:65c=a (squares)
and ! ¼ 0:72c=a (circles), and for five different sample lengths,
L=� ¼ 2:5, 5, 10, 15, and 20.
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Exact microscopic formalism.—Referring to a separate
publication for technical details, we turn now to outline the
proof, and the strategy is as follows. In the framework of
the supersymmetric field theory of localization [21,22], we
calculated explicitly Yðx; x0Þ, and found that it solves the
local diffusion equation. In doing so, we managed to
calculate the weak localization correction, �DðxÞ. Then,
we found the Gell-Mann–Low equation of the local diffu-
sion coefficient, DðxÞ ¼ D0 þ �DðxÞ, which eventually
leads to Eq. (2).

In the present context the supersymmetric technique has
many advantages over others. The key ingredient is the
introduction of a ‘‘spin’’ Q (to be defined below) that
encapsulates wave interferences by fluctuations of the
‘‘spin direction’’: the larger the fluctuation, the stronger
the localization effect. With the help of the Q spin, the
picture of localization in open media is analogous to that
of the more familiar problem—finite classical ferromagnetic
spin chains (but formal treatments are not). In the latter
system, the two end spins are fixed and parallel, and the
spin direction fluctuates elsewhere with a small (large)
fluctuation amplitude closed to the chain ends (midpoint).
Translated to the Q-spin language, such inhomogeneous
fluctuations reflect the spatial inhomogeneity of wave inter-
ferences in open media—the very mechanism of local dif-
fusion. Most importantly, the feature that the two Q spins at
the boundaries are ‘‘parallel’’ takes all disorder-induced
resonant transmissions into full account. Thus, the phe-
nomenology of local diffusion is substantiated by a com-
pletely microscopic formalism, albeit in an elegant manner.

Formally, the spin Q is an 8� 8 supermatrix defined on
the advanced-retarded (AR), bosonic-fermonic (BF), and
time-reversal (TR) sector. The ‘‘AR’’ sector accommodates
different analytic structures of the advanced (retarded)
Green function. The ‘‘BF’’ sector accommodates the
supersymmetry: the diagonal (off-diagonal) matrix ele-
ments are commuting (anticommuting) numbers. The
‘‘TR’’ sector accommodates the time-reversal symmetry.
The leakage enters through the boundary constraint
Qð0Þ ¼ QðLÞ ¼ �AR

3 . Here, �X
3 ¼ diagð1;�1Þ, X ¼ AR;

BF;TR. Then, Yðx; x0Þ is exactly expressed as

Yðx;x0Þ¼��

27

Z
D½Q�e�F½Q� str½�BF

3 ð1þ�AR
3 Þ

�ð1��TR
3 ÞQðxÞð1��AR

3 Þð1��TR
3 Þ�BF

3 Qðx0Þ�:
(4)

The action F½Q� ¼ � ��D0

8

R
L
0 dx strð@xQÞ2 (� the density

of states per unit length and ‘‘str’’ the supertrace) is the
energy cost of the Q-field fluctuations. It introduces a
characteristic scale—the localization length � / ��D0.

Importantly, the mean field QðxÞ ¼ �AR
3 , compatible

with the boundary constraint, minimizes the action.
Bearing this in mind, we introduced the parametrization
Q ¼ ð1þ iWÞ�AR

3 ð1þ iWÞ�1, where WðxÞ anticommutes

with �AR
3 and vanishes at x ¼ 0; L, and performed the W

expansion. By keeping the leading orderW expansions, we

obtained from Eq. (4) bare Yðx; x0Þ, which solves
�D0@

2
xYðx; x0Þ ¼ �ðx� x0Þ with the boundary condition

Yð0; x0Þ ¼ YðL; x0Þ ¼ 0. Calculating the leading wave in-
terference corrections to Yðx; x0Þ, we found

Y ðx;x0Þ¼Yðx;x0Þ�
Z
dyYðx;yÞ@y�DðyÞ@yYðy;x0Þ; (5)

with the leading order weak localization correction

�DðxÞ
D0

¼ 	
Yðx; xÞ
��

� 1

2
ð1� 	2Þ

�
Yðx; xÞ
��

�
2
; (6)

where Yðx; xÞ ¼ ðL� xÞx=ðD0LÞ, and 	 ¼ �1 for the
orthogonal symmetry while 	 ¼ 0 for the unitary symme-
try. Equation (6) justifies that DðxÞ depends on x via �.
For the unitary symmetry the first term of Eq. (6) van-

ishes, reflecting that the one-loop interference is infeasible.
Thus, the local diffusion and scaling behavior of DðxÞ are
universal concepts, extrinsic to the time-reversal symmetry
that is required by the SCLD model.
Scaling theory of local diffusion and disorder-induced

resonant transmission.—We now make an important ob-
servation: Gð�Þ ¼ �DðxÞ=ð��Þ and �, formally, play the
role of the ‘‘Thouless conductance’’ [19] and the ‘‘system
size,’’ respectively. Indeed, from Eq. (6) we found

d lnG
d ln�

¼ �ðGÞ ¼ �1þ c1G�1 þ c2G�2 þ 	 	 	G � 1;

(7)

with c1 < 0 for 	 ¼ �1 and c1 ¼ 0, c2 < 0 for 	 ¼ 0.
This is fully analogous to the usual one-parameter scaling
theory of quasi-1D localization [19], where, in particular,
the perturbative expansion of the � function also finds its
origin in weak localization [16,22].
From Eq. (6), we further found that the weak localiza-

tion corrections of open and infinite media, including the
coefficients, are identical except that the returning proba-
bility, Yðx; xÞ, replaces that of infinite media. This duality
persists in all the higher-order weak localization correc-
tions, and, as such, the� function here is identical to that of
the usual one-parameter scaling theory [19]. Identifying
this duality, we followed Refs. [19,20] to extrapolate
Eq. (7) into the regime of G � 1, obtaining

�ðGÞ ¼ lnG; G � 1: (8)

The scaling theory of local diffusion, namely, Eqs. (7)
and (8), is far beyond the reach of earlier theoretical studies
[21,23] and has far-reaching consequences. (It may be
reproduced within the formalism of Ref. [24].) In particu-
lar, Eq. (8) gives Gð�Þ / e�� for � ! 1 and thus Eq. (2)
which, as shown below, fully captures the rare disorder-
induced resonant transmission. Solving the static local
diffusion equation, we found that the ensemble-averaged
transmission is hTðLÞi / ½RL

0 dx=DðxÞ��1 [This is

regardless of the explicit form of DðxÞ, as first noticed in

Ref. [15].] Inserting Eq. (2) into it gives hTðLÞi / e�L=ð4�Þ
for L � �. On the other hand, noticing that TðLÞ ¼ e��L,
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we found that the typical transmission gives
dhlnTðLÞi=dL ¼ ���1 from the Gaussian distribution of
� [cf. Eq. (3)]. Thus, the localization lengths obtained by
the arithmetic and geometric means differ by a factor of 4
irrespective of orthogonal or unitary symmetry. This is in
agreement with the result of the random matrix theory, and
is because hTðLÞi is dominated by disorder-induced reso-
nant transmissions [12].

To further study effects of rare high-transmission states,
we analyzed all the samples in Fig. 1 (! ¼ 1:65c=a). First
of all, the distribution of lnT is well fitted by the normal
distribution, with the average 
 �L=� and the variance

 2L=�. This confirms the Gaussian distribution of �.
Then, we intentionally eliminated a small fraction of
high-transmission (T > Tc) states (composed mostly of
singly localized states and of a small portion of necklace
states [25]) from the original ensemble (L=� ¼ 10) and
recomputed DðxÞ=D0. As shown in Fig. 2, strikingly, even
when the fraction of removed states is as small as 0.6% (red
solid line), the simulation result deviates drastically from
the original one (black solid line) and is asymmetric,
signaling the breakdown of local diffusion. Thus, we found
that rare high-transmission states are essential to establish
local diffusion and scaling behavior.

Conclusions.—We found in quasi-1D localized samples
a scaling behavior of the (static) local diffusion coefficient
capturing all the rare disorder-induced resonant transmis-
sion. Our findings show unambiguously that the prevailing
SCLDmodel is valid only if rare disorder-induced resonant
transmissions are negligible which, nevertheless, play a
decisive role in transport of localized waves.

The found phenomenon is intrinsic to finite-sized
samples with open boundaries and does not exist in an
infinite sample. It is an unconventional diffusion phenome-
non in the sense that the diffusion coefficient can drop by
many orders of magnitude as the position changes from the

boundary to the midpoint. (For diffusive samples, such a
position dependence is weak and thus does not lead to any
interesting phenomenon other than ordinary diffusion.) It is
such a drastic change (in the diffusion coefficient) that
leads to a global localization behavior as shown in the
scaling of the average transmission which decays exponen-
tially with sample size.
Our theory has many immediate applications. For ex-

ample, it can be directly used to study the speckle pattern
of scattered waves which has recently attracted consider-
able attentions. It may also be generalized to higher di-
mensions for studying disorder-induced resonant
transmissions in (or close to) the localization regime.
This issue has practical applications such as random laser.
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Note added in proof.—After this Letter was submitted, a

related work was published by Payne et al. [26].

[1] J. Billy et al., Nature (London) 453, 891 (2008); G. Roati
et al., ibid. 453, 895 (2008).

[2] T. Schwartz et al., Nature (London) 446, 52 (2007).
[3] K. Yu. Bliokh et al., Phys. Rev. Lett. 97, 243904 (2006).
[4] C. Toninelli et al., Phys. Rev. Lett. 101, 123901 (2008).
[5] A. A. Chabanov et al., Nature (London) 404, 850 (2000).
[6] M. Störzer et al., Phys. Rev. Lett. 96, 063904 (2006).
[7] Z. Q. Zhang et al., Phys. Rev. B 79, 144203 (2009).
[8] H. Hu et al., Nature Phys. 4, 945 (2008).
[9] A. A. Chabanov, Z. Q. Zhang, and A. Z. Genack, Phys.

Rev. Lett. 90, 203903 (2003).
[10] M.Y. Azbel, Phys. Rev. B 28, 4106 (1983).
[11] K. Y. Bliokh et al., Rev. Mod. Phys. 80, 1201 (2008).
[12] C.W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[13] H. Cao et al., Phys. Rev. Lett. 82, 2278 (1999).
[14] I. V. Shadrivov et al., Phys. Rev. Lett. 104, 123902 (2010).
[15] B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma,

Phys. Rev. Lett. 84, 4333 (2000).
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FIG. 2 (color online). Simulation results obtained by eliminat-
ing the high-transmission (T > Tc) states in the original en-
semble (! ¼ 1:65c=a and L=� ¼ 10). The source is placed at
x ¼ 0.
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