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The nonlinear propagation of pulses in liquid-filled photonic crystal fibers is considered. Because of the

slow reorientational nonlinearity of some molecular liquids, the nonlinear modes propagating inside such

structures can be approximated, for pulse durations much shorter than the molecular relaxation time, by

temporally highly nonlocal solitons, analytical solutions of a linear Schrödinger equation. The physical

relevance of these novel solitons is discussed.
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Introduction.—Highly nonlocal solitons were originally
introduced as an ‘‘accessible’’ toy-model for describing
self-trapped optical beams [1]; but this was followed by
experimental demonstrations [2], also driven by early
works on plasma physics, Bose-Einstein condensation and
dissipative systems [3–10], which unveiled the fundamental
role of nonlocality in spatially self-trapped waves. Indeed,
nonlocality allows stabilization with respect to collapse and
the existence of a rich class of propagation-invariant waves
[11,12]; in addition, applications such as light-steering and
all-optical logic gates [13] and in soft-matter and thermal
liquids [14–16] have been demonstrated. Recently, insights
from spatially nonlocal nonlinearwaves also emerged in the
temporal domain [17,18]. However, the relevance of tem-
poral nonlocality is largely limited by the unavoidable
instantaneous Kerr effect, as, e.g., for silica glass in fiber
optics, where ‘‘nonlocal’’ Raman-like terms, although lead-
ing to important consequences as the Raman self-frequency
shift (RSFS) of solitons [19], can be considered as small
perturbations. Recent fabrication advances, however, open
up innovative perspectives. Indeed, microstructured pho-
tonic crystal fibers (PCFs, see Ref. [20]) may be fabricated
with a central hole filled by a material displaying nonin-
stantaneous response as, e.g., molecular liquids with large
reorientational effects [21,22], with instantaneous nonline-
arities acting as small perturbations: exactly the opposite
situation of the silica glass.

In this Letter we show that a completely novel class of
solitary waves exists in these new fibers, which are de-
scribed by an essentially linear model. These localized
waves are shown to display truly remarkable properties,
such as robustness with respect to noise perturbations and
collisions, and emission of phase-matched dispersive
waves—phenomena that are typically associated to purely
nonlinear temporal waves only. In addition they are shown
to be not affected by the RSFS if the response time of the
molecular reorientation is slow enough. As a result, these
highly noninstantaneous fibers can be used in a new variety
of optical devices and applications, also including quantum
information processing.

Reorientational nonlinearities.—Suitable liquids with
large reorientational nonlinearities are composed by small
molecules, as spectroscopy solvents, available in ex-
tremely high purity with large transparency windows
(from 0.5 to 3 �m) [23]. An in-depth survey shows that
best potential candidates are nitrobenzene (C6H5NO2),
toluene (C7H8), and carbon disulfide (CS2), which all
possess small cigar-shaped molecules with low Kerr non-
linearity (C6H5NO2: 671� 10�16 cm2=W, C7H8: 168�
10�16 cm2=W, CS2: 340� 10�16 cm2=W; all at 1064 nm
[24]) and refractive indices larger than silica. C6H5NO2

andC7H8 have low vapor pressure at room temperature and
are easy to handle. CS2, in contrast, is volatile, but has the
best transparency due to its simpler composition. We have
performed calculations for CS2, whose physical properties
are well documented [25], and which has been recently
considered for enhanced supercontinuum generation in
PCFs [21,26]. We stress that our results are not restricted
to one specific liquid.
Theory.—The dimensionless generalized nonlinear

Schrödinger equation (GNLSE) is written as:

i@zAþ 1

2
s@2t Aþ A

Z þ1

�1
Rðt� t0ÞjAðt0Þj2dt0 ¼ 0; (1)

where RðtÞ � �ðtÞhðtÞ is the response function, with

hðtÞ � e�t=T=T the CS2 reorientational nonlinearity, Tt0 ¼
1:68 ps [25], �ðtÞ the Heaviside function, Aðz; tÞ the field
envelope, s ¼ þ1 (s ¼ �1) denotes anomalous (normal)
group velocity dispersion (GVD), z the propagation coor-
dinate (scaled with the second-order dispersion length of
the fiber, see Ref. [19]), and t is time (scaled with the pulse
duration t0). RðtÞ must be normalized such thatRþ1
�1 RðtÞdt ¼ 1. In the following, we will consider the

case s ¼ þ1; when s ¼ �1 interesting effects such as
wave-breaking in the highly nonlocal limit can be inves-
tigated and will be reported elsewhere. The shock term is
not considered in Eq. (1) since the GVD will always
completely dominate the self-steepening effect for a pulse
duration t0 > �=c, which is also the condition of validity
of the slowly varying envelope approximation [19].
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Because of the large transparency bandwidth of CS2, we
can safely neglect linear losses [23].

For a response time much shorter that the pulse width,
T � Rþ1

�1 tRðtÞdt � 1, [19] one can use the propertyRþ1
�1 Rðt� t0ÞjAðt0Þj2dt0 � Rþ1

�1 Rðt0ÞjAðt� t0Þj2dt0 to ex-

pand the envelope in a Taylor series: jAðt� t0Þj2 ’
jAðtÞj2 � t0@tjAðtÞj2 þ � � � . By Eq. (1), we obtain the
well-known Raman NLSE: i@zAþ 1

2 s@
2
t Aþ jAj2A�

TA@tjAj2 ¼ 0, where the last term models the Raman
effects on long pulses. In silica fibers this approximation
is quite good for ps pulses, since Tt0 � 2 fs. A completely
different scenario occurs when T � 1, i.e., when the pulse
duration is much shorter than the response time of the
medium and one expands in a Taylor series the response
function. This is a more delicate procedure since RðtÞ is
discontinuous in t ¼ 0 due to causality. At the first order,Rþ1
�1 Rðt � t0ÞjAðt0Þj2dt0 ¼ R

t
�1 hðt � t0ÞjAðt0Þj2dt0 ’R

t
�1½hðtÞ � t0ð@h=@tÞ�jAðt0Þj2dt0 ¼ hðtÞEðtÞ � ð@h=@tÞ

AðtÞ, where EðtÞ � R
t
�1 jAðt0Þj2dt0 is the partial pulse

energy and AðtÞ � R
t
�1 t0jAðt0Þj2dt0 is the partial pulse

temporal asymmetry. We stress that, despite the presence
of the Heaviside function in RðtÞ, all the integrals above are
continuous and derivable8 t. For each derivative of hðtÞ in
the Taylor series there is a factor 1=T: higher-order deriva-
tive terms become increasingly negligible for T ! 1, and
always continuous in t ¼ 0. Maintaining only the 0th order
term, for T � 1, the integral in Eq. (1) tends asymptoti-
cally to ERðtÞA (discontinuous in t ¼ 0) and we obtain

i@zAþ 1

2
s@2t Aþ ERðtÞA ¼ 0; (2)

where E � Eðt ! þ1Þ is proportional to the total number
of photons launched into the fiber. In the highly noninstan-
taneous limit, the GNLSE (1) is equivalent to a linear
Schrödinger equation (with time and space interchanged
with respect to quantum mechanics): the response time is
so long that the system ‘‘remembers’’ the total injected
energy, while the pulse is propagating. As a result, the
pulse feels the liquid exponentially decaying response as
a linear potential, whose depth is determined by the energy
E. Note that, however, the superposition principle is not
valid for Eq. (2) in the general case.

Localized states.—Being the exponential well among
the solvable potentials, the solution of (2) is known from
standard quantum mechanics. Solitonlike bound states are
found by solving the equation for t < 0 and t > 0, and then
by imposing continuity of the envelope and its derivative at
t ¼ 0; this provides the wave number �> 0. Letting
Aðz; tÞ ¼ aðtÞ expði�zÞ leads to (t > 0)

1

2
@2t aþ E

T
expð�t=TÞa ¼ �a: (3)

For t < 0 the localized solution is a ¼ N expð ffiffiffiffiffiffiffi
2�

p
tÞ

where N ðEÞ is a normalization constant. Considering the
solutions of (3) vanishing as t ! 1 leads to

a ¼ N
J�ð

ffiffiffiffiffiffiffiffiffi
8ET

p
e�t=2TÞ

J�ð
ffiffiffiffiffiffiffiffiffi
8ET

p Þ (4)

with � ¼ ffiffiffiffiffiffiffi
8�

p
T. For large t, a decays as expð��t=2TÞ.

The allowed eigenvalues � are implicitly given by

0F1ð;
ffiffiffiffiffiffiffi
8�

p
T;�2ETÞ ¼ 0; (5)

where 0F1ð; a; zÞ ¼
P1

n¼0 z
n=½n!ðaÞn� is the confluent hy-

pergeometric limit function, and ðaÞn � �ðaþ nÞ=�ðaÞ is
the rising factorial. Equation (5), which provides the dis-
persion relation �ðE; TÞ, can only be solved numerically.
The constant N cannot be written explicitly, and is found
by requiring that the total soliton energy is E. Solutions can
be classified by counting the number of nodes m. We shall
call the ‘‘fundamental’’ state the solution with m ¼ 0,
which has the largest � and the shortest pulse duration.
For small E, Eq. (5) can be expanded to give � ’ E2=2,
which shows that � ¼ E ¼ 0 is also a solution. For large
values of E, when m ¼ 0, one has � ’ ð2=�Þ2E=T.
‘‘Moving’’ solitons can be found by the solutions of
Eq. (3) with 2� ! 2�� v2, and by multiplying the fields
by e�ivt, where v is an extra parameter associated with the
soliton velocity (�> v2=2). For jtj large, the field decays
as a� expð� ffiffiffiffiffiffiffi

2�
p jtjÞ, this means that the original approxi-

mation for Eq. (2) is verified a posteriori only if � �
1=ð2T2Þ, or E � �2=ð8TÞ.
Figure 1(a) shows the profiles of some analytical solu-

tions of Eq. (2). Figures 1(b) and 1(c) show the dependence
of � on E and T for fixed T and E respectively, as calcu-
lated by solving Eq. (5) numerically. Approximate expres-
sions in terms of E and T are given below.
RSFS.—The solutions of the model (2), being linear, are

stable against small noise fluctuations, as shown in
Fig. 2(a) where we report, e.g., the propagation of the
higher-order soliton in Fig. 1(a) with 5% noise. If the
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FIG. 1 (color online). (a) Localized solutions of Eq. (2) for
T ¼ 10, E ¼ 30, for � ¼ 2:33614 (m ¼ 0), 1.82551 (m ¼ 1),
1.45665 (m ¼ 2) and 1.16691 (m ¼ 3), calculated by using Eq.
(5). (b) N , cAS, g, � as functions of T, for E ¼ 30. (c) �ðTÞ for
fixed E ¼ 10. (d) �ðEÞ for fixed T ¼ 10.
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same solution is propagated inside the full model (1), we
observe that the pulse is subject to a Raman shift, which is
not described by Eq. (2). We developed a general theory of
RSFS of solitons for Eq. (1) by writing Eq. (1) as i@zA þ
1
2 s@

2
t A þ ERðtÞAþ ½RRðt � t0ÞjAðt0Þj2dt0 � ERðtÞ�A ¼ 0

and treating the term under square brackets as a perturba-
tion of the stationary states. One finds that the soliton
central frequency shifts according to �ðzÞ¼�ðz=EÞ�R
dtjAðtÞj2@t½

R
Rðt� t0ÞjAðt0Þj2dt0 �ERðtÞ� ’ cASz

R
dt½@2t j

AðtÞj2�RðtÞ, where cAS � A=E is the asymmetry coeffi-

cient. The final result is (x � ffiffiffiffiffiffiffiffiffi
8ET

p
):

� ¼ cASzN 2

J�ðxÞ2T
R1
0 e�t=T@2t J

2
�ðxe�t=2TÞdt ffi � 32

�7
E2

T z; (6)

which shows that the RSFS of these solitons depends on
the asymmetry of their temporal profiles. The last expres-
sion in (6) is valid for large E and T (whereN 2 ffi 2E=�2T
and cAS ffi T=�2), and illustrates how, as the degree of
nonlocality T grows, the Raman shift is inhibited, while
also growing with the energy. The rate of RSFS g � �=z
and the asymmetry coefficient cAS of the stationary states
are shown in Fig. 2 in terms of T and E for the fundamental
soliton solutions.

Dispersive resonant radiation.—In the presence of
higher-order dispersion terms in Eq. (2), the highly non-
instantaneous solitons can resonantly emit dispersive ra-
diation at well-defined frequencies, analogously to what
occurs for Schrödinger solitons in solid-core PCFs [27]. By
substituting Aðz; tÞ ¼ ½FðtÞ þ fðz; tÞ�ei�z into Eq. (2),
where FðtÞ is the localized state profile and f is the small
dispersive radiation amplitude, assuming that the response
time T is large in comparison with the localized state
duration, and keeping only the first order term in f, we

have: ½i@z � �þ D̂ði@tÞ þ ERðtÞ�f ¼ �D̂Hði@tÞF, where
D̂ði@tÞ � 1

2@
2
t þ i�@3t and D̂H � i�@3t , and � is the third-

order dispersion coefficient, the only one that we include

here. At phase matching, the radiation and soliton have the
same � and fð!Þ ’ Sð!Þ=½Dð!Þ þ ERð!Þ � ��, where
Sð!Þ is the Fourier transform of the source term

�D̂Hði@tÞF. This yields the condition Dð!ÞþERð!Þ’�,
which determines the resonant frequency !R. The energy-
dependent part is an extra contribution to the resonant
condition that is unique for highly noninstantaneous sol-
itons, and allows us to tune the frequency position of the
emitted radiation by adjusting the total input pulse energy.
Kerr nonlinearity.—An important issue concerns the

effect of a residual instantaneous Kerr nonlinearity. This
may be due to the Kerr effect of the fiber cladding, or of the
liquid itself. As shown in panels 3(a) and 3(b) for a sechlike
input pulse (i.e., an input that is not matched with
the profile of the fundamental state), in the absence of
the Kerr effect [Fig. 3(a)], the propagation largely resem-
bles a standard fundamental soliton. Conversely, increas-
ing the contribution of the Kerr effect, measured by a
coefficient r, which is the relative weight of the instanta-
neous versus the noninstantaneous part of the nonlinearity
(of the order of �0:1 in liquids) [Fig. 3(b)], induces a
characteristic oscillation of the central position of the pulse
in the temporal and spectral domains. This is due to the
coupling between higher-order localized states excited in
the fiber, as induced by the Kerr nonlinearity perturbation.
Details will be given elsewhere.
Liquid-filled PCF.—CS2 has a relatively large refractive

index around 1.6–1.7. If used in a standard silica step-index
fiber, the field would be considerably localized in the
liquid, and our calculations show that it will be not possible
to obtain anomalous dispersion in the optical region. By a
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FIG. 2 (color online). (a) Propagation of 1-soliton in Eq. (1),
T ¼ 10, E ¼ 30, � ¼ 2:33614. (b) Same as (a) but for T ¼ 250,
E ¼ 30, � ¼ 0:109846. (c) Various final spectra showing reduc-
tion of RSFS (E ¼ 32, T ¼ 10, 50, 100, 250). (d) Resonant
radiation in reduced model for � ¼ 0:05 (for m ¼ 4 state).
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FIG. 3 (color online). (a),(b) Soliton oscillations due to a small
Kerr term [r ¼ 0 in (a) and r ¼ 0:11 in (b), T ¼ 10, input pulse
A ¼ NsechðtÞ with N ¼ 5], in Eq. (2). (c) GVD of the funda-
mental mode (HE11) of a CS2-filled PCF. Fiber parameters are
with a ¼ 1:6 �m, b ¼ 1:2 �m (see inset). Each curve refers to
different hole spacing � expressed in �m.

PRL 105, 263902 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

263902-3



single ring of air holes in the silica cladding, however, the
zero-GVD point can be largely shifted in the region where
experiments are most easily carried out (i.e., � < 2 �m).
In Fig. 3(c) we report the GVD of various CS2-filled core
silica PCFs (with a single ring of holes arranged in a
triangular cladding lattice as shown in the inset) for differ-
ent values of the pitch �. Signatures of the existence of
highly noninstantaneous solitons are the Kerr-induced os-
cillations shown in Fig. 3(b), and the reduction of the
Raman self-frequency shift when gradually decreasing
the pulse-duration t0 from the ps to the fs regime, opposite
to what happens in silica fibers.

Conclusions.—We predict the existence of a novel class
of temporally localized waves propagating inside micro-
structured fibers with a central core filled by nonlinear
liquids with a slow reorientational nonlinearity.
Surprisingly, these waves behave very much like soli-
tons—albeit being the solution of a linearized equation—
and are sustained by a strongly nonlocal temporal re-
sponse, due to a pronounced Raman-like effect induced
by reorientational nonlinearity of cigar-shaped molecules.
By borrowing concepts from nonlocal spatial solitons, we
find that these objects are very robust with respect to noise,
caused by (for example) amplified spontaneous emission.
Highly noninstantaneous solitons may thus support the
development of novel classes of lightwave fiber systems
and novel soliton based lasers, as well as opening up a new
route towards quantum solitons and multidimensional soli-
tary waves sustained by a highly noninstantaneous non-
linearity. In addition, by exploiting the nonlinear coupling
between highly noninstantaneous solitons, we believe that
it will be possible to control and enhance supercontinuum
generation in novel and unexpected ways.
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