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We show that when photons in N-particle path-entangled jN; 0i þ j0; Ni or N00N states undergo Bloch

oscillations, they exhibit a periodic transition between spatially bunched and antibunched states. The

period of the bunching-antibunching oscillation is N times faster than the period of the oscillation of the

photon density, manifesting the unique coherence properties of N00N states. The transition occurs even

when the photons are well separated in space.
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When electrons in crystalline potentials are subjected to
uniform external fields, classical mechanics predicts that
they will exhibit Ohmic transport. Remarkably, in 1929
Bloch predicted that the quantum coherence properties of
the electrons prevent their transport [1,2]. He showed that
the electrons dynamically localize and undergo periodic
oscillations in space. Bloch oscillations (BOs) manifest the
wave properties of the electrons, and therefore appear in
other systems of waves in tilted periodic potentials. BOs
were observed for electronic wave packets in semiconduc-
tor supperlattices [3], matter waves in optical lattices [4],
and light waves in tilted waveguide lattices [5,6] and in
periodic dielectric systems [7].

In optics, BOs relate to the classical (wave) nature of
light, and not to its quantum (particle) nature. Recently,
quantum properties of light propagating in periodic lattices
of identical waveguides have been studied, predicting
the emergence of nontrivial photon correlations [8,9].
Nonclassical correlations between photon pairs were ex-
perimentally observed in periodic lattices [10], while the
effect of disorder was studied in [11]. BOs of a single
photon in tilted lattices were shown to follow the dynamics
of coherent states [12]. Nonclassical features of BOs of
photons in a two-band model were studied by Longhi, who
showed that the probability to detect photon pairs in differ-
ent bands oscillates nonclassically [13].

In this Letter we study theoretically the propagation
of spatially entangled states in waveguide lattices which
exhibit Bloch oscillations. We consider light fields initiated
in a superposition of N photons in site �0 or in site �0,
jc i ¼ 1

ffiffi

2
p ðjNi�0 j0i�0 þ e�i’j0i�0 jNi�0 Þ. Such superposi-

tions, coined N00N states, exhibit fascinating quantum
interference properties. N00N states are considered the
optimal quantum states of light for quantum metrology
applications such as quantum lithography and quantum
imaging [14]. Here we show that when N00N states
undergo BOs, the nature of the correlations between
the photons oscillate between spatially bunched and anti-
bunched states. We find that the period of the oscillations is
inversely proportional to the photon number N, resembling
the �=N oscillations of N00N states in Mach-Zehnder

interferometers. Interestingly, the oscillation period is
also inversely proportional to the initial separation of the
two input sites�0 � �0. A unique feature of theN00N state
BOs is that the transition between the bunched and anti-
bunched states can happen even when the photons are
separated by many lattice sites.
We consider the simplest waveguide structure which

exhibits BOs, a one-dimensional lattice of single mode
waveguides which are evanescently coupled. The propa-
gation in the lattice is determined by two parameters: the
phase accumulation rate in the waveguides (the propaga-
tion constant) and the tunneling rate between neighboring
sites (the coupling constant) [15]. The propagation of the
fields in waveguide lattices is described by the tight-
binding model, and was used to demonstrate many optical
analogues of solid-state phenomena [16,17]. BOs are
observed when the coupling constants between all the
waveguides are identical and the propagation constants
depend linearly on the waveguide position [5,6]. To study
the propagation of nonclassical light in such structures we
quantize the fields in the lattice. Since each of the wave-
guides supports a single mode, the field in waveguide � is
represented by the bosonic creation and annihilation
operators ay� and a�, which satisfy the commutation rela-

tions ½a�; ay�� ¼ ��;�. The operators evolve according to

the Heisenberg equations [9]:

� i
@ay�
@z

¼ �Bay� þ Cðay�þ1 þ ay��1Þ: (1)

Here z is the spatial coordinate along the propagation
axis, C is the coupling constant, and B is the difference in
the propagation constants of neighboring sites. The evolu-
tion of the creation and annihilation operators is calculated

using the Green function U�;�0 ðzÞ of Eq. (1), ay�ðzÞ ¼
P

�0U�;�0 ðzÞay�0 ðz ¼ 0Þ [9]. The unitary transformation

U�;�0 ðzÞ describes the amplitude for the transition of a

single photon from waveguide � to waveguide �0. The
Green function of Eq. (1) is given by [6,18]

U�;�0 ðzÞ ¼ ei
�
2ð�0��ÞeiBz2 ð�0þ�ÞJ�0��

�
4C

B
sinðBz=2Þ

�
; (2)
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where J�ðxÞ is the �th Bessel function of the first kind.

Since any input state can be expressed with the creation
operators ay� and the vacuum state j0i, the evolution of

nonclassical states can be calculated using Eq. (2). The
probability to locate at site � a photon that is injected into
the lattice at site �0 ¼ 0 is given by the photon density
n� ¼ hay�a�i ¼ jU�;�0¼0j2 and is depicted in Fig. 1(a).

The photon exhibits BOs: it spreads across the lattice by
tunneling between the waveguides in a pattern character-
ized by two peaks at the two edges of the distribution. Each
peak covers approximately four waveguides and oscillates
around the input site with a period �B ¼ 4�=B. The path of
the peaks marks the two branches of the BO. We note that
such a double-branch pattern is not a special feature of
single photons. Any state of light which is coupled to a
single waveguide exhibits exactly the same photon density.
However, when the light is coupled to more than one
waveguide, the propagation of the photons becomes
state-dependent. Rai et al. have shown that a single photon
which is initiated in a superposition of several waveguides
exhibits BOs like a coherent state [12]. Figure 1(b) shows
the photon density for a single photon initiated in a super-
position of two neighboring waveguides, with a relative
phase ’ ¼ 0. The two paths the photon can take, starting
either from waveguide �0 ¼ 0 or from waveguide �0 ¼ 1,
contribute coherently to the photon density, n� ¼
1
2 jU�;�0¼0 þU�;�0¼1j2. Because of this interference the

photon oscillates in a single branch, exactly like a coherent
beam. In contrast, when a N00N state with N > 1 is
coupled to the lattice, the photon density is identical to
the photon density obtained by two incoherent beams,
n� ¼ N

2 jU�;�0¼0ðzÞj2 þ N
2 jU�;�0¼1ðzÞj2 [Fig. 1(c)].

Nonclassical features of light are probed by correlations
between the photons. We focus on the probability to
detect p photons in waveguide � and q ¼ N � p photons

in waveguide �, �ðp;qÞ
�;� ¼ 1

q!p! hay
p

� ay
q

� aq�a
p
�i [19]. For a

N00N state coupled to waveguides �0 and �0, the multiple
detection probability is

�ðp;qÞ
�;� ¼ 1

2

N!

p!ðN � pÞ! jJ�0��ð�ÞpJ�0��ð�Þq

þ ei�ðzÞJ�0��ð�ÞpJ�0��ð�Þqj2 (3)

Where � ¼ 4ðC=BÞ sinðBz=2Þ, and �ðzÞ is given by

�ðzÞ ¼ ’þ 1
2ð�þ BzÞð�0 ��0ÞN: (4)

Equation (3) shows that two terms contribute to the
multiple detection probability: the photons arrive either
from waveguide �0 or from waveguide �0. Since the pho-
tons are indistinguishable, these two paths interfere. The
phase between the two paths is proportional to Nz, indicat-
ing that the oscillation period scales like 1=N (see below).

In Fig. 2 we depict �ð1;1Þ
�;� , the probability to detect one

photon at waveguide � and another photon at waveguide
�, for aN00N state withN ¼ 2. The left column shows the
evolution of the probability for a N00N state with a phase
’ ¼ 0. At the beginning of the propagation (Bz � �),
the photons follow the same path as in a periodic array
of identical waveguides [9,10]. At this stage the off-

diagonal terms of the probability matrix �ð1;1Þ
�;� are much

stronger than the diagonal terms, indicating that the pho-
tons exhibit antibunching: each photon takes a different
branch of the oscillation. However, during the expansion
period of the BO, as the photons approach the turning
point, the symmetry of the two-photon probability matrix
changes significantly. The diagonal terms of the matrix
become more pronounced, i.e., there is a higher probability
to find the two photons in the same branch of oscillations.

At the turning point z ¼ �B

4 , the photons bunch: the off-

diagonal terms of the probability matrix vanish, indicating
that the photons are never found simultaneously at the two
different branches. Remarkably, even though the photons
start the propagation in spatially separated branches, at the
turning point they bunch to one of the branches. Beyond
this point the photon density contracts back towards the
input waveguides. During this contraction the pairs again
switch to an antibunched state. We note that the bunching-
antibunching transition happens when the two branches of
the BO are spatially separated, whereas the bunching-
antibunching transition predicted in binary lattices occurs
only when the photons are in the same waveguide [13].
The cycle in the symmetry of the probability matrix is
observed for any phase ’ of the N00N state, as demon-
strated Figs. 2(b) and 2(c). The phase ’ sets how bunched
or antibunched the photons are at the beginning of the
propagation, but the period of the cycle is phase indepen-
dent [see Eq. (4)].
The bunching-antibunching cycle described above can be

realized experimentally by measuring the correlations at the
output of lattices with identical parameters but with different

FIG. 1 (color online). (a) The photon density n�ðzÞ for a single
photon initiated at the waveguide �0 ¼ 0. The photon is mostly
localized in two narrow peaks at the edges of the distribution.
The path of each peak (red dashed line) follows a sinusoidal
trajectory with a period �B, and marks a branch of the BO. In this
example the sinusoidal trajectory has an amplitude of 24 wave-
guides. (b) The photon density n�ðzÞ for a N00N state input with

N ¼ 1 coupled to waveguides �0 ¼ 0 and �0 ¼ 1. The photon is
located at a single branch which oscillates around the input
waveguide with a period �B. (c) The photon density n�ðzÞ for
a N00N input state with N ¼ 2 coupled to waveguides �0 ¼ 0
and �0 ¼ 1. The photons from the �0 ¼ 0 and �0 ¼ 1 inputs add
up incoherently, showing double-branch oscillations.
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propagation lengths. For each propagation length, the wave-
guide at the center of each oscillating branch (henceforth
waveguides x and y) can be imaged on two photon-number
resolving detectors. The probability to detect p photons at

waveguide x and q ¼ N � p photons at waveguide y is

proportional to �ðp;qÞ
x;y . When a delay is introduced between

the photons that are injected to waveguide �0 and the
photons injected to waveguide �0, the photons become dis-
tinguishable, as in the Hong-Ou-Mandel (HOM) experiment
[20]. This corresponds to replacing the N00N state with a
mixed state of N photons in either one of the two input
waveguides. The ratio of the detection probabilities for the
N00N and mixed states is given by

�ðp;qÞ ¼ �ðp;qÞ
x;y

1
2

N!
p!ðN�pÞ! ðjJp�0�x

Jq
�0�y

j2 þ jJp
�0�x

Jq
�0�y

j2Þ : (5)

Figure 2(d) shows �ð1;1Þ as a function of the lattice
length, for N00N states with N ¼ 2 and ’ ¼ 0, �=2, �.

When �ð1;1Þ ¼ 0, the photons are bunched and are never
found in the two different branches of the BO; scanning
the delay between the input ports of the lattice will yield a

HOM dip. When �ð1;1Þ ¼ 2, the photons are anti-
bunched, and a delay scan will result in a HOM peak
[21]. Figure 2(d) clearly shows that the bunching-
antibunching oscillations have a period of �B=2.
We next study input states which exhibit correlation

oscillations with shorter periods. Equation (4) suggests
that the period of the oscillations in the correlation prop-
erties depends on the spacing between the input wave-
guides and on the number of photons in the N00N state.
Figure 3 shows several examples of correlation oscillations
with periods shorter than �B=2. In Fig. 3(a) we show the
propagation for a N00N state with N ¼ 2, where the input
sites are separated by one waveguide. In this case the
photons exhibit a bunching-antibunching transition with a
different spatial symmetry [9]. The correlation map oscil-
lates between a state in which the peaks are highest at the
corners of the correlations matrix, to a case in which the
highest probability is between the corners. The oscillation
period is �B=4, twice the period observed for a N00N state
input with adjacent waveguides. Finally we calculate

�ðN=2;N=2Þ
�;� for N00N states with N ¼ 6 [Fig. 3(b)] and

N ¼ 10 [Fig. 3(c)], with adjacent input waveguides. The
oscillation period is indeed �B=N, as predicted by Eq. (4).
Within one oscillation of the single photon density, the
N-photon distribution switches N times from all the pho-
tons in the same branch to photons divided equally be-
tween the two branches.
In conclusion, we studied the propagation of photonic

N00N states in waveguide lattices which exhibit Bloch
oscillations. We found that while the photon density oscil-
lates in the Bloch frequency, the multiple detection proba-
bility oscillates at higher frequencies. These oscillations
indicate that the photons show a transition from a bunched
to antibunched states, with a period that scales as 1=N.
By carefully designing the parameters of the Bloch lattice
this oscillatory transition can be used to distribute bunched
and antibunched states of light in an integrated and
thus robust manner. To experimentally observe the
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FIG. 2 (color online). Bloch oscillations of N00N states
with N ¼ 2 coupled to two adjacent waveguides jc i ¼ 1

ffiffi

2
p �

ðj2i0j0i1 þ e�i’j0i0j2i1Þ. (a) The multiple detection probability

�ð1;1Þ
�;� at several propagation distances, for’ ¼ 0. At the beginning

of the propagation the two photons exhibit antibunching and are
located at the two different branches of the oscillations. As the
photons approach the turning point (z ¼ �B=4), they bunch and are
found with the highest probability in the same branch. (b) Same as
(a) for’ ¼ �

2 . The photons showbunching-antibunching cycle, but

in this case start the oscillation partially bunched. (c) Same as (a)
and (b), for ’ ¼ �. Here the photons start the bunching-
antibunching cycle bunched. (d) The normalized coincidence rate
�ð1;1ÞðzÞ as a function of the lattice length for ’ ¼ 0 (blue solid
line),’ ¼ �

2 (green dash-dotted line), and’ ¼ � (red dotted line).

The coincidence rate is calculated between the positions of the
central waveguide in each branch, showing oscillations with a
period�B=2. See [25] for amovievisualizing thepropagationof (a).
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bunching-antibunching transition, we propose to perform a
Hong-Ou-Mandel measurement between two waveguides at
the two branches of oscillations using photon-number re-
solving detectors. We predict oscillations between a HOM
dip and peak as a function of the propagation distance in the
lattice. Recent progress in waveguide lattice fabrication
[22,23], photon-number resolving detectors and photonic
N00N state sources [24], make such measurements in reach.
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FIG. 3 (color online). Bloch oscillations of N00N states with
sub-�B=2 correlation-oscillation periods. (a) The multiple detec-

tion probability �ð1;1Þ
�;� at several propagation distances for the

input state jc i ¼ 1
ffiffi

2
p ðj2i�1j0i1 þ j0i�1j2i1Þ. The photons ex-

hibit bunching-antibunching oscillations (see text) with a period

�B=4. (b),(c) The multiple detection probability �ðN=2;N=2Þ
�;� for a

N00N state with N ¼ 6 (b) and N ¼ 10 (c), injected to adjacent
waveguides jc i ¼ 1

ffiffi

2
p ðjNi0j0i1 þ j0i0jNi1Þ. The oscillations of

the correlation matrix are much faster, hence the probability
matrix is calculated for five lattice lengths close to the turning
point z ¼ �B=4. (d) The normalized coincidence rate
�ðN=2;N=2ÞðzÞ as a function of the lattice length for the above
three cases. The period of the oscillations are �B=4 [(a), blue
solid line], �B=6 [(b), green dash-dotted line], and �B=10 [(c),
red dotted line]. See [25] for a movie visualizing the propagation
of (a) and (b).
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