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We study the quantum dynamics of a two-level system interacting with a quantized harmonic oscillator

in the deep strong coupling regime (DSC) of the Jaynes-Cummings model, that is, when the coupling

strength g is comparable or larger than the oscillator frequency ! (g=! * 1). In this case, the rotating-

wave approximation cannot be applied or treated perturbatively in general. We propose an intuitive and

predictive physical frame to describe the DSC regime where photon number wave packets bounce back

and forth along parity chains of the Hilbert space, while producing collapse and revivals of the initial

population. We exemplify our physical frame with numerical and analytical considerations in the qubit

population, photon statistics, and Wigner phase space.

DOI: 10.1103/PhysRevLett.105.263603 PACS numbers: 42.50.Ct, 42.50.Pq, 85.25.Cp

The interaction between a two-level system and a har-
monic oscillator is ubiquitous in different physical setups,
ranging from quantum optics to condensed matter and
applications to quantum information. Typically, due to
the parameter accessibility of most experiments, the
rotating-wave approximation (RWA) can be applied pro-
ducing a solvable dynamics called the Jaynes-Cummings
(JC) model [1]. In this case, Rabi oscillations inside the JC
doublets or collapses and revivals of the system popula-
tions [2] are paradigmatic examples of the intuitive physics
behind the JC dynamics. To achieve these and other
phenomena in the lab, the strong coupling (SC) regime
is required, that is, the qubit-oscillator coupling has to be
comparable or larger than all decoherence rates. This
model accurately describes the dynamics of cavity QED
[3,4], trapped ion experiments [5], and several setups in
mesoscopic physics, where the qubit-oscillator model is
essential in modeling superconducting qubits [6] with
either coplanar transmission lines [7–10] or nanomechan-
ical resonators [11,12]. Nowadays, solid-state semiconduc-
tor [13] or superconductor systems [14–20] have allowed
the advent of the ultrastrong coupling (USC) regime,
where the coupling strength is comparable to or larger
than appreciable fractions of the mode frequency: g=! *
0:1. In this regime, the RWA breaks down and the model
becomes analytically unsolvable, although some limits
can be explored [21–25]. Confident of the impressive fast
development of current technology, one could explore
further regimes where the rate between the coupling
strength and oscillator frequency could reach g=! * 1,
here called deep SC (DSC) regime. This unusual regime,
yet to be experimentally explored, is the focus of our
current efforts. In this Letter, we introduce a rigorous and
intuitive description of the DSC regime of the JC model,
providing an insightful picture where photon number wave
packets propagate coherently along two independent

parity chains of states. In this way, the Hilbert space splits
in two independent chains, exhibiting a comprehensible
collapse-revival pattern of the system populations.
We consider the Jaynes-Cummings Hamiltonian without

the RWA, also called Rabi Hamiltonian, describing a two-
level system coupled to a single mode harmonic oscillator

H ¼ @

2
!0�z þ @!ayaþ @gð�þ þ ��Þðaþ ayÞ: (1)

Here, a and ay are the annihilation and creation operators
of the mode with frequency !, while �z and �� are Pauli
operators associated to a qubit with ground state jgi,
excited state jei, and transition frequency !0. We concen-
trate in the study of the DSC regime, g=! * 1, with no
particular relation between ! and !0. We do not refer to
any particular system because several of them in quantum
optics and condensed matter may profit from the physical
insight developed here [26]. We start by observing that the
parity operator [27]

� ¼ ��zð�1Þna ¼ �ðjeihej � jgihgjÞð�1Þaya; (2)

with �jpi ¼ pjpi and p ¼ �1, is a key element associ-
ated to the Hamiltonian in Eq. (1). It is instrumental to
understand how the system dynamics moves inside the
Hilbert space split in two unconnected subspaces or parity
chains,

jg0ai $ je1ai $ jg2ai $ je3ai $ . . . ðp ¼ þ1Þ;
je0ai $ jg1ai $ je2ai $ jg3ai $ . . . ðp ¼ �1Þ: (3)

Neighboring states within each parity chain may be con-
nected via either rotating or counterrotating terms. For
example, in the parity chain with p ¼ þ1, the counter-
rotating term �þay induces the transition jg2ai ! je3ai,
while the rotating term �þa induces je1ai  jg2ai.
When going back from DSC! USC! SC, the parity

PRL 105, 263603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

0031-9007=10=105(26)=263603(4) 263603-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.263603


chains break into the known Jaynes-Cummings doublets
fjg; na þ 1i; je; naig because we enter into the domain of
applicability of the RWA.

We introduce the parity basis jp; nbi, where bybjnbi ¼
nbjnbi, and b ¼ �xa such that bjp; nbi ¼ ffiffiffiffiffi

nb
p jp; nb � 1i.

Using this basis, the Hamiltonian in Eq. (1) can be
written as

H ¼ @!bybþ @gðbþ byÞ � @
!0

2
ð�1Þbyb�: (4)

This Hamiltonian commutes with the parity operator �,
and for each parity chain (p ¼ �1) there is an independent
Hamiltonian describing a perturbed harmonic oscillator.

Note that the term�@!0ð�1Þbyb�=2 behaves as an energy
shift proportional to !0. In the DSC regime, we can get rid
of the term @gðbþ byÞ in Eq. (4) by changing to the basis

Dð��0Þjp; nbi, with Dð�0Þ ¼ e�0b
y���

0
b and �0 ¼ g=!.

The eigenenergies and eigenfunctions can be approxi-
mated as a series in !0=!

E
�0
p;nb=@�!nb�g2=!�!0

2
pð�1Þnb�nbnb

þ X

mb�nb

!2
0

4!ðnb�mbÞ j�nbmb
j2þOð!3

0=!
3Þ: (5)

Alternative approximations can be found in the literature
[21]. To first order we get a displacement in the energy
levels due to the coupling �nbnb ¼ hnbjDð2�0Þjnbi, a

correction which is much smaller than 1, j�nbmb
j �

2�ðnbþmbÞ: Note that this formalism is rigorously valid in
the DSC regime.

We study now the DSC dynamics with the initial state
jc ð0Þi ¼ jþ; 0bi ¼ jg; 0ai, as we activate the interaction
in Eq. (4). We observe that the photon statistics PnbðtÞ will
spread independently along each parity chain, eventually
reaching an energy barrier and bouncing repeatedly.
Remarkably, an intuitive picture can be found, as displayed
in Figs. 1 and 2, that provides physical insight into a
problem that is, in general, analytically intractable. Note
that, in Figs. 1(a) and 1(b), the round trip of the initial
photon number wave packet induces collapse revivals that
are not reminiscent of the SC regime of the JC model [2],
where initial large coherent states are required. In the DSC
limit, with !0 ¼ 0, this intuitive picture can be rigorously
confirmed integrating the evolution

jc ðtÞi¼Dyð�0Þe�ið!byb�g2=!ÞtDð�0Þjþ;0bi¼Uðt;!0¼0Þ
�jc ð0Þi¼eiðg2=!Þte�iðg=!Þ2 sinð!tÞjþ;�ðtÞi; (6)

where �ðtÞ ¼ �0ðe�i!t � 1Þ is the amplitude of a coherent
state. The revival probability of the initial state reads

Pþ0bðtÞ ¼ jhc ð0Þjc ðtÞij2 ¼ e�j�ðtÞj2 ; (7)

exhibiting periodic collapses and full revivals [28]. When
the initial state is jþ; 2bi ¼ jg; 2ai, as in Fig. 1(c), the DSC

dynamics generates counterpropagating photon number
wave packets in both directions that bounce back and forth
producing interference secondary peaks. Similar intuition
follows when considering initial superposition states, e.g.,

ðjþ; 0bi þ jþ; 2biÞ=
ffiffiffi

2
p

, as long as the state components
belong to the same parity chain, otherwise no secondary
peaks appear. When we break the qubit degeneracy,
!0 � 0, the intuitive picture remains but we lose the
integrability of the problem. Probability still spreads along
each parity chain, as seen in Fig. 2, but now the photon
number wave packet suffers self-interference, it distorts
and its center no longer follows the periodic orbits of
!0 ¼ 0 The result are full collapses and partial revivals

FIG. 1 (color online). (a),(b) Round trip of a photon number
wave packet and collapse revivals due to DSC dynamics with
initial state jþ; 0bi ¼ jg; 0ai. (c) Collapse revivals with second-
ary peaks due to counterpropagating photon number wave pack-
ets starting in initial state jþ; 2bi ¼ jg; 2ai. For all cases,!0 ¼ 0
and g=! ¼ 2.

FIG. 2 (color online). (a) Photon statistics at different times of
the evolution with !0 ¼ 0:5!. (b) Comparison of probability
Pþ;0b ðtÞ calculated for !0 ¼ 0 (solid line) and !0 ¼ 0:5!

(dashed line). In all simulations the initial state is jþ; 0bi and
g=! ¼ 2.
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where probability Pþ0b is not completely restored, and

whose maximum value deteriorate as time passes.
The collapses and revivals have also interesting conse-

quences in phase space, which we have analyzed using
the Wigner function and phase space trajectories,

ð �xðtÞ; �pðtÞÞ ¼ hðbþ by; iby � ibÞ= ffiffiffi

2
p i. In the integrable

case !0 ¼ 0, the Wigner function of the state is a
Gaussian centered on a point xþ ip ¼ �ðtÞ which draws
periodic circular orbits on the plane. As soon as we switch
on the term proportional to !0, the wave packet suffers
two distortions, see Fig. 3. The first one is a squeezing
tangential to the orbit, shown in Fig. 3(c). Accompanied
by the diffusion and interference in the Wigner wave
packet, the orbits also distort, becoming spirals that relax
towards the center of the original orbits, ��0.

The phenomenon of collapses and revivals for the non-
integrable case, !0 � 0, even if partial, reveal a structure
in the Hamiltonian spectrum, which is approximately equi-
spaced. We can write the revival probability

Pþ0bðtÞ ¼ j
X

‘

jhc ð0Þj�‘ij2e�iE‘t=@j2; (8)

as a function of the overlap of the initial state with the
eigenstates of the full model, ðH � E‘Þj�‘i ¼ 0. When
!0 ¼ 0, the eigenenergies are regularly spaced, E‘ ¼
@!‘ and the function becomes periodic with period
2�=!. This causes an initial Gaussian wave packet in
phase space to get reconstructed at the same position for
t ¼ 2�; 4�; 6�; . . . . In the DSC case with !0 � 0, the
energy levels deviate very slightly from this regular distri-
bution, E‘ ¼ @!‘� @�‘!0 where the correction �‘!0 is
less than 10% for the examples considered in this work.
The reconstruction of the wave packets is incomplete and

different partial waves may get delayed or accelerated with
respect to the original orbit, �ðtÞ. This causes the squeez-
ing of the Wigner function and the self-interference in the
photon number wave packet, as displayed in Fig. 2(a).
We have also found that the overall dynamics is very

accurately captured by the first order correction to the
eigenenergies, shown in Eq. (5). If we use �nb ¼
ð�1Þnbp�nbnb=2 in Eq. (8), together with the initial

condition hc ð0Þj�nbi ¼ hc ð0ÞjDð��0Þjpnbi ¼
�þ;p expð�j�j2=2Þ�nb=nb!, we obtain curves that approxi-

mate very well the exact result. This is shown in Figs. 4(a)
and 4(b) for values of !0 ¼ 0:3! and 0:5! in the DSC
regime, g=! ¼ 2. In both cases the revivals happen close
to t ¼ kð2�=!Þ, with integer k, but decreasing in intensity
and with a large fraction of the curve moving with a slower
speed, reconstructing itself at later times. The effect of this
is more evident in Fig. 4(b), and also in the photon number
wave packet plot in Fig. 3(a), where one appreciates two
waves with slightly different periods interfering with
each other. The existence of this delayed revival is due to
the structure of the wave function c ðtÞ that, as shown in
Fig. 4(c), is composed of many contributions close to zero
detuning, �nb ’ 0, and a few large contributions with

� ¼ �0:116, �0:223. The former constitute the main
revivals, while the second ones make the revivals at
slightly longer periods, 2�!� 0:223!0, forming the
second wave front in Figs. 2(a), 4(a), and 4(b).
Based on our previous results, we have developed a heu-

ristic approximation that allows us to reproduce the main
revivals. Our method recognizes that if we start the dynam-
ics with state jc ð0Þi ¼ jþ; Nbi, the main contribution to the
wave function is around a level Nr

b ¼ ½ðg=!Þ2 þ Nb�,
where ½�� denotes the closest integer. This is indeed the

FIG. 3 (color online). Modulus of the Wigner function
jWðx; pÞj and trajectory (x, p) for Eq. (4). (a) For !0 ¼ 0 the
Wigner function is a symmetric Gaussian (a coherent state) and
moves clockwise in phase space along a circle. (b)–(d) For
!0 ¼ 0:5! the Wigner function loses its symmetry and moves
clockwise along a spiral trajectory as shown in the sequence
corresponding to t ¼ 0:5, 1, 5. In both simulations the initial
state is jþ; 0bi and g=! ¼ 2.

FIG. 4 (color online). Collapses and revivals of Pþ;0b ðtÞ for
g=! ¼ 2 and (a) !0 ¼ 0:3! and (b) !0 ¼ 0:5! We plot the
exact numerical solution (area) at first order in !0=! (solid) and
a two-mode approximation (red, dashed). (c) Distribution of
probability of the different detunings �nb ¼ ð@!nb � Enb Þ=@!0

weighted by their contribution to the wave function given in
Eq. (8). We have marked the level Nr

b which is used for the two-

mode approximation in curves (a) and (b).
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case in the considered examples, as shown in Fig. 4(c). We
will only consider the energy correction for this level, �Nr

b

and neglect the dephasing of all other off-resonant terms.
Under this criteria, we approximate the system state, up to
normalization, as

jc ðtÞi � Uðt; !0 ¼ 0Þjc ð0Þi þ c Nr
b
ðe�ið!Nb�!0�Nr

b
Nr
b
=2Þt

� e�i!NbtÞDð��0Þjþ; Nr
bi; (9)

where Uðt; !0 ¼ 0Þ is the evolution operator at !0 ¼ 0
introduced in Eq. (6), and c Nr

b
¼ h�Nr

b
jc ð0Þi. This form

of the state is motivated by the behavior of the Wigner
function, as seen in Fig. 3(b): a central core approximated
by the solution of !0 ¼ 0 plus a delayed correction captur-
ing the effects of!0, forming the squeezed tail. Considering
the simplest case of Nb ¼ 0, from state in Eq. (9), it is
straightforward to obtain a simple analytical expression for
the revival probability

Pþ0bðtÞ � 2e�j�ðtÞj2=2��2
0
�

2Nr
b

0

Nr
b!
½cosð!0�Nr

b
t=2Þ � 1�

þ e�j�ðtÞj2 ; (10)

where small terms are neglected. This expression has been
compared with the exact solution, as shown in Figs. 4(a) and
4(b), giving a good estimate of the height of the partial
revivals as a function of time and !0. The other features,
such as the delayed front is not reproduced because this
approximation does not contain the contributions with
� ¼ �0:223, but this can be improved by including more
resonant levels.

Two qubits and a mode.—It is also possible to give a
qualitative and quantitative description of the DSC
considering the case of two qubits. Here, the 2 	 2 	
N-dimensional Hilbert space bifurcates into two indepen-
dent parity chains of tetrahedra, see Fig. 5, where each
vertex is connected to their neighbors via rotating or coun-
terrotating terms. The same dynamical properties of proba-
bility collapses and revivals can be found, as well as
interesting entanglement properties.

Conclusions.—The SC regime of the JC model is con-
sidered nowadays an intuitive and comprehensive field.
The USC regime is described by the SC regime plus
RWA and higher-order corrections. In this work, we have
aimed at developing an insightful description of the DSC
regime of the JC model. The transition between the SC and

DSC regimes remains a rather diffuse crossover with well
understood frontiers.
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FIG. 5 (color online). Parity chains for the two-qubit DSC
regime.
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