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We observe the phase space trajectory of an entangled wave packet of a trapped ion with high precision.

The application of a spin-dependent light force on a superposition of spin states allows for coherent

splitting of the matter wave packet such that two distinct components in phase space emerge. We observe

such motion with a precision of better than 9% of the wave packet extension in both momentum and

position, corresponding to a 0.8 nm position resolution. We accurately study the effect of the initial ion

temperature on the quantum entanglement dynamics. Furthermore, we map out the phonon distributions

throughout the action of the displacement force. Our investigation shows corrections to simplified models

of the system evolution. The precise knowledge of these dynamics may improve quantum gates for ion

crystals and lead to entangled matter wave states with large displacements.
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Entanglement of matter is a fascinating subject, as it
represents the fundamental feature of quantum physics.
Its observation in experimental realizations of former
Gedanken experiments forces us to abandon any classical
imagination of particles or matter waves. Beyond these
considerations, entanglement is a resource for important
tasks, including information processing and precision mea-
surements. In the last decade, we have witnessed a growth
of experiments with well-defined quantum systems, the
most prominent among them being atomic two-level sys-
tems (qubits) [1]. For trapped ions, quantum gates are
based on the transient entanglement between qubit and
external (motional) degrees of freedom, which is mapped
onto the qubit state, such that the motion is finally disen-
tangled from the qubit. High fidelity gate operations are
only possible if no information is left in the motional
degrees of freedom. Therefore, a high degree of motional
control is required, for which it is of interest to precisely
monitor the coupled dynamics of spin and motion. The
focus of this Letter is the entanglement of the spin of a
trapped ion with its motional state by means of laser driven
displacement operations as proposed in Refs. [2] and ex-
perimentally realized, e.g., in [3–6]. We present an analysis
of the dynamics both in phase space and in Hilbert space,
where we sense higher-order terms of the ion-light inter-
action Hamiltonian. We are able to reveal experimentally
that quantum superpositions of coherent states are increas-
ingly difficult to control when the displacement magnitude
becomes larger. Our work is of importance for the inves-
tigation of the scalability of quantum information process-
ing based on trapped ions. This Letter is organized as
follows: First, we describe how to prepare our qubit and
how we generate and manipulate entangled states. We then
present data which elucidate the role of the initial ion
temperature for the dynamics driven by the spin-dependent
force. We show three ways to analyze the dynamics of the
optically driven ion: First, we use decay and revival of the

spin contrast for extraction of displacement magnitudes.
The second approach consists of a more detailed measure-
ment of the motional state by mapping out phonon distri-
butions. A third approach maps out the dynamics in phase
space by means of a wavepacket homodyning technique,
which allows us to follow the ion’s trajectory with high
precision. While the first scheme is sufficient to set the
laser interaction parameters for gate operations, it does not
provide conclusive information about error sources, except
for the effect of initial thermal excitation, which we accu-
rately match to a theoretical model. This method character-
izes the quantum state only partially as only overlap
integrals along one direction in phase space are measured,
relying on assumptions on the initial state. The second
scheme gives partial information about the dynamics in
Hilbert space; i.e., diagonal elements of the density matrix
characterizing the quantum state in phonon number repre-
sentation can be extracted. It can be extended to a complete
tomography scheme [7]. A third approach based on wave
function homodyning works even outside the Lamb-Dicke
regime and provides an accurate and simultaneous mea-
surement of position and momentum expectation values.
Furthermore, it represents an efficient way for complete
quantum state tomography, as it is pointed out in [8].
We use a microstructured Paul trap [9], which provides

harmonic confinement with frequencies of !=ð2�Þ ¼
f1:35; 2:4; 3g MHz for a single 40Caþ ion, where the lowest
frequency !ax pertains to the axial vibrational mode. We
apply Doppler cooling on the S1=2 to P1=2 transition near

397 nm. A magnetic field of about B ¼ 0:4 mT splits both
Zeeman qubit-levels of the ground state S1=2, labeled

fj"i; j#ig, by 18 MHz. We initialize the ion by ground state
cooling [10], followed by optical pumping to j"i. For qubit
manipulations drive stimulated Raman transitions: the ion
is irradiated by two laser beams near 397 nm at detunings
in the range between �=ð2�Þ ¼ 40 GHz and 100 GHz
from the dipole transition. To perform different operations
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we utilize three different beam geometries: (i) Two cop-
ropagating beams, R1 and CC, orthogonal to the direction
of B with a relative detuning corresponding to the Zeeman
splitting, drive single qubit rotations without coupling to
any motional degrees of freedom. Both beams have a linear
polarization, aligned according to R1 k B and CC?B.
(ii) Two beams, R1 and R2, with R2 propagating in parallel
to the magnetic field and R1 propagating orthogonally to
R2, both beams are aligned at 45� with respect to the trap
axis. R1 and R2 establish a beat pattern with a difference
vector �k along the trap axis enabling momentum transfer.
Qubit rotations may be driven with a coupling to the ion’s
axial mode, characterized by a Lamb-Dicke factor � ¼
�kx0 � 0:25, where x0 is the ground state wave packet
extension. This geometry is used for to drive Rabi oscil-
lations on motional sidebands. (iii) A third pair of beams is
comprised of R2 and CC, where only circular polarization
components are present such that no coupling of the qubit
levels occurs, but axial motion can be excited via an
ac-Stark light force oscillating close to the vibrational
frequency. Phase and magnitude of this drive depend on
the qubit state [4,5]. By adjusting the R2 polarization, the
force can be set to displace only one spin component
(purely circular), the two spin components in the same
direction (linear in-plane with CC propagation direction)
or the two spin components in different directions (linear
orthogonal to CC). After performing manipulations on the
spin and the motional state, the spin is read out by trans-
ferring the population from j"i to the metastable D5=2 state

via a rapid adiabatic passage pulse [10]. When illuminated
with resonant light near 397 nm, the ion is measured to be
in j#i if we detect fluorescence, and inD5=2 (corresponding

to j"i) otherwise. We repeat the sequence 200 times to
determine the spin occupation probabilities P" and P#.
We generate entangled wave packets with the sequence
in Fig. 1(a). Laser configuration (i) is employed for the
spin-echo pulses and configuration (iii) for the spin-
dependent displacement. For balanced circular polariza-
tion components of the R2 beam, the Schrödinger picture
Hamiltonian for the light-matter interaction reads

ĤS ¼ �@�S sinð�kx̂� �R2;CCtþ��R2;CCÞ�̂z; (1)

where �S is the amplitude of the Stark shift beat pattern of
the two beams, �R2;CC ¼ !ax � � is the relative detuning,

��R2;CC is the optical phase difference, and �̂z is the Pauli

spin operator. In the Lamb-Dicke limit, where h�kxi � 1
holds throughout the evolution, a displacement pulse
acting for time t on a superposition state results in the
state [11]

j�fi ¼ 1
ffiffiffi
2

p ðj "; �ðtÞi þ ij #;��ðtÞiÞ;

�ðtÞ ¼ ���S

2�
ei�t=2 sin

�t

2
:

(2)

When the concluding �=2-pulse acts on this state, the spin
will only flip completely into j"i if no displacement was
present, since this can be seen as a which-path information,
suppressing the spin interference. The fringe contrast is
given by the overlap of the adjacently displaced ground

state wave packets: CðtÞ ¼ jh��ðtÞj�ðtÞij2 ¼ e�2j�ðtÞj2 ,
thus serving as a measure of the displacement magnitude.
As the motion is driven slightly off-resonant with �R2;CC,

the spin is periodically entangled and disentangled with the
motion, and we observe the coherence decay and revive.
The data plotted in Fig. 1(a) show the dynamics of P"ðtÞ at
the end of the sequence, indicating that the wave packets of
both spin components are driven back into the origin after
about 24 �s, as expected from � ¼ 2�� 42 kHz. For
applications of the displacement operation, it is of interest
to investigate the effect of an initial thermal excitation of
the motional state. Figure 1(b) shows the contrast signal for
a Doppler cooled ion with an average phonon number
�n � 20. For this and the following measurements in this
Letter, an empirical exponential decay e��t for laser inter-
action times t is included to account for laser induced
decoherence [12]. The expression for the contrast is
obtained by thermal averaging with displacements �nðtÞ
that depend on n:

C ðtÞ ¼ e��t
X

n

pðiÞ
n jhn;��nðtÞjn; �nðtÞij2: (3)

Here, pðiÞ
n is the initial thermal phonon distribution. The

displacements �nðtÞ are determined by a quantum dynami-
cal simulation: The time-dependent 1D Schrödinger

FIG. 1. Time evolution of entanglement and disentanglement
for a ground state wave packet: (a) Experimental pulse sequence,
see text. The gaps in the spin-echo sequence have a duration of
100 �s. The phase contrast as a function of displacement pulse
duration is shown for (b) a ground state ion, and (c) a Doppler
cooled ion. The solid lines result from a fit to Eq. (3), as
described in the text, and the dashed line indicates the prediction
of Eq. (2) in Ref. [4], neglecting the nonclassical dependence of
the force magnitude on the motional state. Note that curve (b) is
shifted upwards by 0.2 for better visibility.
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equation for the harmonically bound ion subject to the
time-dependent control laser field is solved by means of
a Chebshev propagator technique in conjunction with a
Fourier grid [13]. The displacement is obtained from the
position and momentum expectation values. The resulting
thermal average of Eq. (3) is plotted as the solid line in
Fig. 1(c), and is in good agreement with the experimental
data. Previously used models, such as the one in Ref. [4],
do not include the n dependence of the displacement force
and do not correctly reproduce the data. The dependence of
the force magnitude on n is of importance for multi-ion
entangling gate operations in the thermal regime [14],
where the thermal dispersion of trajectories can be among
the main sources of infidelity. The light-force mediated
entanglement operation can be investigated not only in
terms of spin coherences, but also by directly monitoring
the motional degree of freedom.We drive the displacement
dynamics and analyze the resulting motional state with the
sequence in the inset of Fig. 2 by using the Raman beams
in configuration type (ii), where resonant Rabi oscillations
on the blue motional sideband (bsb) contain information on
the motional state, i.e., the occupation probabilities pn of

the number states jni [15]. The resonant bsb excitation for
a pulse time tp results in a signal

Pj#iðtpÞ ¼
X

n

pn

2
ðae��t cosð�n;nþ1tpÞ þ 1Þ: (4)

To obtain the pn along with the parameters �0, a and the
decoherence rate �, we employ a maximum-likelihood
reconstruction by means of a genetic algorithm [16].
Blue sideband Rabi frequencies of �0 ¼ 2��
28ð2Þ kHz and decay rates between � ¼ 5� 103 s�1 and
� ¼ 11� 103 s�1 are attained, where � increases with the
motional excitation as the faster bsb Rabi oscillations are
more sensitive to intensity fluctuations [15]. Simulations
confirm that the decoherence rates and their behavior on
the motional state is consistent with a shot-to-shot fluctua-
tion of the Rabi frequency of about 4% around its mean
value. The residual Stark shift of less than 10 kHz is
assumed not to contribute significantly to the dephasing.
The resulting phonon distributions for the various displace-
ment pulse times can be fit to distributions pertaining to a

coherent state, pnð�Þ ¼ e�j�j2 j�j2n=n!. The resulting val-
ues �ðtÞ are shown in Fig. 2(a), where one can clearly
observe the periodical excursion of the wave packet. The
measured phonon distributions in Fig. 2(b) indicate even
more strikingly how the light-force driven motion returns
the ion back to the vibrational ground state near times of
30 �s. For mapping of the wave packet dynamics, we
employ a wave packet homodyning technique [5]; see
Fig. 3(a). The spin superposition state formed by the �=2
pulse is affected by the light force from the type (iii) laser
interaction such that only the j #i component is displaced

by �e�i�t=2þ�1 while j "i remains unaffected. The � pulse
flips both spin states, and now a second type (iii) displace-
ment pulse acts on the wave packet component which was
left before at � ¼ 0. While the amplitudes are equal, the
phase�2 of the second drive pulse is varied, such that both
spin components only partially overlap, depending on the
difference �� ¼ �2 ��1. When the sequence is con-
cluded by the last �=2 pulse, the width and the phase of
the interference pattern, Fig. 3(b), allow for determining
the magnitude and phase of �. The upper spin state occu-
pation probability finally reads [5]

P"ðtÞ ¼ 1
2ð1� e�j�j2½1�cos�ðtÞ���t cos½j�j2 sin�ðtÞ�Þ: (5)

Here, �ðtÞ ¼ ��þ �tþ �tw is the oscillator phase
picked up during the driving and idle times in the sequence,
denoted by t and tw, respectively. Sets of P" were recorded
for displacement pulse durations ranging from 0 �s to
76 �s in steps of 4 �s for varying beat phases ��, and
the data are fit to Eq. (5). The extent up to which the
dynamics can be followed is limited by the decoherence
rate of � ¼ 13ð1Þ � 103 s�1. The resulting displacements
�ðtÞ are plotted in Fig. 3(c). We can clearly identify
deviations from the idealized dynamics, as the wave packet
excursion approaches the wavelength of the driving light

FIG. 2. Phonon distribution dynamics: (a) The experimental
measurement sequence, see text. (b) Measured displacement
parameter versus displacement pulse time obtained from the
measured phonon distributions, the solid line is a fit to Eq. (2).
(c) Reconstructed phonon distributions pðnÞ from the blue
sideband Rabi oscillations. The typical confidence intervals are
up to�0:1 for the displaced states and about�0:05 for the states
with small or no displacement.
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wave and the Lamb-Dicke approximation fails. The phase
�ðtÞ is given by the center of the envelope in the beat
signal. From the time dependence of �0ðtÞ, we obtain
the detuning � with high precision, it is found to be
2�� 5:237ð27Þ kHz. We thus determine the vibrational
frequency with a relative accuracy on the order of 10�5.
Our homodyne measurement scheme can be seen as a
continuous variable analog of Ramsey spectroscopy. In
order to attain a comparable performance with conven-
tional Ramsey pulses, one would require long delay times
of tenths of ms. From the data plotted in Fig. 3(c), one can
recognize the deviation from the circular trajectory pre-
dicted by Eq. (2). Because of the shallowing of the sine
potential Eq. (1) for large excursions �kx / 1, the maxi-
mum excursion of the wave packet is reduced with respect
to Eq. (2) for longer driving pulses, which can be ac-
counted for by empirically introducing a reduced effective
return time teffret [6], corresponding to an effective detuning
�eff > � in the sine function argument in Eq. (2). A fit to
the modified Eq. (2) reveals an effective detuning of �eff ¼
2�� 6:63ð10Þ kHz. The trajectory can be reconstructed
only up to an unknown angle of rotation around the origin,
given by the relative optical phase between the R2 and CC
beams at the ion location, which is varying from shot to

shot. The measurement accuracies along both axes are
much smaller than the dimension of the ground state

wave packet size
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2m!ax

p
, which is about 9.5 nm. This

does of course not violate the uncertainty principle, as
the measurement is statistical and its accuracy relies on
the shot-to-shot reproducibility. Quantum simulation, e.g.,
of random walks [17] may benefit from our method for a
precise observation of the wave packet dynamics.
In conclusion, we were able to follow the trajectory of

the entangled wave packets. We could measure the con-
tribution of higher-order terms of the interaction to the
wave packet dynamics. In the future, we envisage to con-
trol the displacement magnitude with a temporally tailored
light force. Furthermore, in our experiments we could
show how the initial affects the light-force drive and
describe this by the correct model. This could be of im-
portance for devising gate schemes more robust than the
current ones.
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FIG. 3. (a) Trajectory measurement pulse scheme; see text.
(b) Homodyne wave function beat signal, for a displacement
pulse of length t ¼ 60 �s along with a fit to Eq. (5). (c) The
resulting phase space coordinates j�jei� inferred from fitting the
measured signals P"ð�Þ to Eq. (5), along with the theoretical

trajectory Eq. (2). The outer dashed circle indicates the trajectory
that would be observed in the case of a spatially homogeneous
force. The circle around the origin indicates the e�1=2 radius of
the Wigner function, more than 10 times larger than our maxi-
mum measurement errors in �.
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