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1Institut de Physique Nucléaire, IN2P3-CNRS, Univ. Paris-Sud, F-91406 Orsay Cedex, France
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Zero-range effective interactions are commonly used in nuclear physics and in other domains to

describe many-body systems within the mean-field model. If they are used within a beyond-mean-field

framework, contributions to the total energy that display an ultraviolet divergence are found. We propose a

general strategy to regularize this divergence and we illustrate it in the case of the second-order

corrections to the equation of state (EOS) of uniform symmetric matter. By setting a momentum cutoff

�, we show that for every (physically meaningful) value of � it is possible to determine a new interaction

such that the EOS with the second-order corrections reproduces the empirical EOS, with a fit of the same

quality as that obtained at the mean-field level.
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In many-body systems contact interactions are reason-
able approximations to the realistic finite-range forces that
can be employed in cases where the interaction range is
smaller than the typical length scale represented by the
interparticle distance. The main advantage of using zero-
range interactions is that the equations to solve are greatly
simplified. Two examples of commonly used contact in-
teractions are the Skyrme forces which are quite popular in
nuclear physics [1], and the contact interactions with cou-
pling strengths depending on the s-wave scattering length
which are employed for dilute atomic gases (see, e.g.,
Ref. [2]). In general, effective interactions contain parame-
ters that must be adjusted to reproduce a given set of
observables (for instance, in the nuclear case, binding
energies and radii of a few selected nuclei, and bulk
properties of nuclear matter). Usually this is done at the
self-consistent mean-field level. When going beyond this
level, it is likely that the effective interaction has to be
redetermined. However, trying to discuss this issue is
impossible in the case of contact interactions, since going
beyond-mean-field, e.g., by including second-order correc-
tions, implies dealing with contributions to the total energy
which contain an ultraviolet divergence.

Many authors have studied the perturbation series for
the energy of the electron gas [3–5] and of nuclear systems
[6–9]. In all cases, the interaction is finite-range and no
ultraviolet divergence appears. In this Letter, we apply to a
simple case a strategy to handle the contact interactions up
to second order. We include a momentum cutoff � among
the parameters of the interaction, and we show that for
every value of� the other parameters can be determined in
such a way that the total energy of the system with second-
order contributions remains the same. This strategy, and
the formulas we will show, are quite general and can be
applied to different Fermi systems. For the numerical

application we restrict ourselves to symmetric nuclear
matter, treated with a simplified zero-range interaction.
The second-order terms that contribute to the total en-

ergy in uniform matter and diverge in the case of contact
forces are shown in the lower part of Fig. 1. The divergence
is caused by the integration on q and is somehow unphys-
ical since the high-momentum states are certainly outside
the scale at which effective forces are to be used.
In the case of effective interactions between point-

nucleons, the cutoff � must certainly be smaller than the
momentum associated with the nucleon size, i.e., smaller
than � 2 fm�1. In fact, these interactions are used to
describe giant resonances or rotational bands of nuclei
and consequently the scale should be even smaller, perhaps
around 0:5 fm�1. However, our procedure is tailored on the
basic idea of renormalizable quantum-field theories: so, in
principle, for any value of � a new set of parameters is
found which leads to the same equation of state (EOS)—
including the second-order contributions. We show below
that this is mathematically possible owing to the fact that
the second-order correction is well-behaved as a function
of the density. Thus, we imitate the QED idea that the bare
electron mass and charge can be chosen for every different
energy cutoff in such a way that the physical values of mass
and charge are always obtained.
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FIG. 1. First- and second-order diagrams for the total energy in
uniform matter. Labels refer to momentum states.
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An ultraviolet divergence appears already at the mean-
field level in the Hartree-Fock-Bogoliubov (HFB) [10]
or Bogoliubov–de Gennes (BdG) [11] models when zero-
range forces are employed in the pairing channel. In this
case, sophisticated regularization schemes exist in which
the irregular term of the pairing field is suppressed and
the dependence on the energy cutoff is eliminated. These
techniques are commonly adopted, for example, in atomic
physics in BdG models [2,12], and have been also em-
ployed in nuclear physics [13], but they cannot be directly
applied to the case of interest studied in the present work.

Let us write the zero-range force as

Vðr1; r2Þ ¼ g�ðr1 � r2Þ: (1)

To make contact with the Skyrme interactions [1] the
strength g is written as t0 þ 1

6 t3�
� and this corresponds

to the so-called (t0, t3) model that is a simplification of the
usual Skyrme model where the spin-dependent, velocity-
dependent, and spin-orbit terms are dropped. If the Skyrme
force is viewed as a G matrix (thus including ladder dia-
grams), the introduction of second-order contributions
would in principle imply a double counting. However,
our attitude is to consider as a matter of fact our interaction
as phenomenological, and our framework as an effective
theory where parameters are readjusted according to which
diagrams are explicitly introduced.

Normalizing the single-particle wave functions within a
box of volume �, the Hartree-Fock (HF) potential-energy
contribution (upper part of Fig. 1) is equal to

E ¼ d
�2

ð2�Þ6
Z
k1;k2<kF

d3k1d
3k2vðk1;k2;k1;k2Þ; (2)

where d ¼ ðn2 � nÞ=2, n being the level degeneracy (4 in
the case of symmetric nuclear matter), and v ¼ g

� . The

energy per particle or EOS is obtained by adding the
kinetic contribution and reads in our case

E

A
ð�Þ ¼ 3@2

10m

�
3�2

2
�

�
2=3 þ 3

8
t0�þ 1

16
t3�

�þ1: (3)

Equation (3) coincides with the EOS obtained with the SkP
parameter set [14], in which no contribution coming from
the velocity-dependent terms appears and the effective
mass coincides with the bare mass. Since SkP, as all the
Skyrme sets, has been fitted to reproduce within HF the
basic features of the nuclear EOS, one can consider its
associated energy per particle as a benchmark which must
be reproduced with reasonable accuracy for every value
of � when the second-order correction is included.

This second-order correction is given by

�E ¼ d
�3

ð2�Þ9
Z
k1;k2<kF;jk1þqj;k2�qj>kF

� d3k1d
3k2d

3q
v2

�k1
þ �k2

� �k1þq � �k2�q

� C
Z

dqv2GðqÞ; (4)

where C ¼ �6 m�3ð2�Þ�9
@
�2 for symmetric nuclear

matter, and GðqÞ reads

GðqÞ ¼
Z
k1;k2<kF;jk1þqj;k2�qj>kF

d3k1d
3k2

q2 þ q � ðk1 � k2Þ
: (5)

Some details about the evaluation of GðqÞ and �E with
a zero-range force are recalled in the Appendix; finally,
we write �Eð�Þ=A as �ð�Þ � Ið�;1Þ, with

�ð�Þ � � 3

4�6

mk7Fg
2

@
2�

; (6)

Ið�;1Þ � 1

15

�Z 1

0
uduF1ðuÞ þ

Z 1

1
uduF2ðuÞ

�
; (7)

where u ¼ q=2kF. When the cutoff � is introduced, the
last integral has �=2kF as the upper limit and the corre-
sponding quantity is denoted by Ið�;�Þ. The expressions
for F1ðuÞ and F2ðuÞ are given in the Appendix. The ana-
lytical expression of Ið�;�Þ is

Ið�;�Þ ¼ 1

105
ð43� 46 ln2Þ � 18

35
þ �

35kF
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210k3F
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�
: (8)

In Fig. 2(a), E=Aþ �E=A is plotted for different values
of � and compared with the SkP mean-field values of E=A
(solid black line). The correction �E=A is also shown in
Fig. 2(b). One observes that the second-order correction
causes a shift of the saturation point to lower densities.
The curves are calculated using the SkP parameters
(cf. Table I). For � ¼ 1:5 fm�1, the maximum correction
is already comparable with the energy per particle at the
saturation point, i.e., � 15 MeV.
To better understand the behavior of �E=A, we plot

�ð�Þ and Ið�;�Þ separately in Fig. 3. The ultraviolet
divergence is visible at all the values of the density, by
comparing the trends in panels (b),(c), and (d). At the same
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time, one observes also a divergent behavior of I for � ! 0
that is dictated by the upper limit �=ð2kFÞ of the second
integral in Eq. (7). It can be seen in the analytical expres-
sion of Eq. (8). Ið�;�Þ multiplies the coefficient �ð�Þ
which goes to zero like k4F when the density goes to zero.
One may worry that for large values of �, the divergent
behavior of the integral dominates when � ! 0, so that no
regularization is possible for very low density. However,
this happens for values of � which are physically mean-
ingless, namely, for � � 250–300 fm�1.

For each value of � we can perform a least square fit to
determine a new parameter set SkP�, such that the EOS
including the second-order correction matches rather well
the one obtained with the original force SkP at the mean-
field level. This is our main result and it is illustrated in
Fig. 4(a). The refitted parameters are listed in Table I
(together with the saturation point). In Fig. 4(b) we display,
for purely mathematical illustration, the refit done with the
extreme value of � ¼ 350 fm�1.

In summary, we have shown that for any physically
meaningful value of the cutoff � it is possible to find a
contact interaction that can be used in a mean-field plus
second-order corrections framework and can describe sat-
isfactorily the empirical EOS. The quality of the fits that
can be judged from Fig. 4 and the �2 values in Table I,
demonstrates that the strategy we have outlined in a

general fashion works, in practice, for the case of symmet-
ric nuclear matter treated with a simplified contact force.
One can foresee various applications to the studies

of strongly correlated fermion systems in all the domains
of many-body physics where zero-range forces are used
and where beyond-mean-field theories are necessary for a
more accurate treatment of complex correlations. In nu-
clear physics, models beyond mean-field theories where
ultraviolet divergences appear owing to the use of a zero-
range interaction are: (i) models where multiparticle-
multihole configurations are introduced [15], (ii) second

TABLE I. From the second line, columns 2, 3, and 4: parameter sets obtained in the fits associated with different values of the cutoff
� compared with the original set SkP (first line). In the fifth column the �2=N value (�2 divided by the number of fitted points)
associated to each fit is shown. In columns 6 and 7 the saturation point is shown.

t0 (MeV fm3) t3 (MeV fm3þ3�) � �2=N �0 (fm�3) E=Að�0Þ (MeV)

SkP �2931:70 18 708.97 1=6 0.16 �15:95

� ¼ 0:5 fm�1 �2352:900 15 379.861 0.217 0.000 04 0.16 �15:96

� ¼ 1 fm�1 �1155:580 9435.246 0.572 0.001 42 0.17 �16:11

� ¼ 1:5 fm�1 �754:131 8278.251 1.011 0.001 06 0.17 �16:09

� ¼ 2 fm�1 �632:653 5324.848 0.886 0.001 92 0.16 �15:82

� ¼ 350 fm�1 �64:904 360.039 0.425 0.000 42 0.16 �15:88
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FIG. 2 (color online). (a) E=Aþ�E=A as a function of the
density and for different values of the cutoff �. The SkP mean-
field EOS (solid black line) is shown for comparison.
(b) Correction �E=A for different values of �.
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random-phase-approximation models [16], and (iii) mod-
els that take into account the coupling between single-
particle degrees of freedom and collective vibrations
[17–20]. In these cases, a further development of our
technique may be envisaged.
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Appendix.—GðqÞ in Eq. (5) can be rewritten by express-
ing all wave vectors in units of kF:

GðqÞ ¼ k4F

Z 1

0
d�e��q2

Z
D1

dk1e
��q�k1

Z
D2

dk2e
�q�k2

(A1)

where the domains Di are DðkiÞ � fki < 1; jki þ qj> 1g.
By introducing y ¼ �q, and the unit vector q̂ ¼ q=jqj,

GðqÞ ¼ k4F
q

Z 1

0
dye�yq

Z
D1

dk1e
�yq̂�k1

Z
D2

dk2e
yq̂�k2 :

(A2)

(i) First case: q > 2. In this case, jk1 þ qj> 1 and
jk2 � qj> 1 are satisfied when k1 < 1 and k2 < 1.
Equation (A2) leads to

G1ðqÞ ¼ k4F
q

Z 1

0
dye�yq

�
2�

y3
ðeyðy� 1Þ þ e�yðyþ 1ÞÞ

�
2
:

(A3)

(ii) Second case: 0< q< 2. One can apply the technique
of Ref. [21], with this change of variables

Z
DðpÞ

dpfðp;qÞ¼q
Z 2�

0
d�

Z 1

0
d�

Z 1

q�=2
xdxfðn��q;qÞ;

(A4)

where x ¼ q̂ � n and n is a unit vector n ¼ pþ �q. In this
case, Eq. (A2) becomes

G2ðqÞ ¼ k4F
q

Z 1

0
dye�yq

�
2�

y3
ðe�yðyþ 1Þ � eyðq�1Þðyþ 1Þ

þ qyeyq=2Þ
�
2
: (A5)

The energy correction can be written as

�E ¼ 4�Ck3F

�Z 2

0
q2dqv2G1ðqÞ þ

Z 1

2
q2dqv2G2ðqÞ

�
:

(A6)

With the change u ¼ q=2 we obtain �Eð�Þ=A as
�ð�Þ � Ið�;1Þ [cf. Eqs. (6) and (7)], with

F1ðuÞ ¼
�
4þ 15

2 u� 5u3 þ 3
2u

5

�
logð1þ uÞ

þ
�
4� 15

2 uþ 5u3 � 3
2u

5

�
logð1� uÞ

þ 29u2 � 3u4 � 40u2 log2; (A7)

F2ðuÞ ¼ ð4� 20u2 � 20u3 þ 4u5Þ logð1þ uÞ
þ ð�4þ 20u2 � 20u3 þ 4u5Þ logðu� 1Þ
þ 22uþ 4u3 þ ð40u3 � 8u5Þ logu: (A8)
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