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An effective field theory of quarks, gluons, and pions, with the number N of colors treated as large, is

proposed as a basis for calculations of hadronic phenomena at moderate energies. The qualitative

consequences of the large N limit are similar though not identical to those in pure quantum chromody-

namics, but because constituent quark masses appear in the effective Lagrangian, the ‘t Hooft coupling in

the effective theory need not be strong at moderate energies. To leading order in 1=N the effective theory

is renormalizable, with only a finite number of terms in the Lagrangian.
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The success of quantum chromodynamics (QCD) in
accounting for processes like electron-positron annihila-
tion into hadrons at high energy shows that it is the correct
theory of strong interactions, but it has been difficult to use
QCD to account for the wide variety of hadronic phe-
nomena at moderate energies.

On one hand, the suggestion [1] to consider QCD in the
limit of a large number N of colors, with the gauge cou-

pling g vanishing in this limit as 1=
ffiffiffiffi
N

p
, has had remarkable

success in reproducing qualitative features of strong inter-
action phenomena. But it has not led to much quantita-

tively, presumably because the ‘t Hooft coupling ~g � g
ffiffiffiffi
N

p
is not small at moderate energies. Indeed, with the u and d
quark masses negligible, the N-independent masses of
mesons like the � can only be of the order of the integration
constant�QCD in the renormalization group equation for ~g,
so inevitably ~g cannot be small at these meson masses.

Alternatively, it is possible to introduce constituent
quark masses into QCD by taking chiral symmetry break-
ing into account in an effective field theory of quarks,
gluons, and pions, so that hadrons (other than the pion)
can get their mass mostly from the constituent quark
masses. In consequence, gluon couplings in the effective
theory need not be strong at moderate energies. This fits in
well with the observed pattern of hadron masses, such as
the fact that the average of the masses of the nucleon and
�ð1238Þ is not very different from 3=2 the � and!masses.
Such an effective field theory was briefly mentioned in [2]
and proposed and developed in some detail (for the three-
flavor case) by Manohar and Georgi [3]. But here there is a
different problem: In effective field theories we generally
must include every one of the infinite number of interac-
tions satisfying relevant symmetries, all of them presum-
ably important at moderate energies, so that the theory can
only be used at low energies.

I suggest that by combining these two approaches the
difficulties of each can be avoided. To leading order in
1=N, the effective field theory of quarks, gluons, and pions
is effectively renormalizable, with only a finite number of
terms in the Lagrangian needed to absorb all infinities.

Such an effective field theory, with a small value of the
‘t Hooft coupling at moderate energies, may explain why
the naive quark model works so well. Since the pion is
already in the Lagrangian, it is not even necessary for the
QCD coupling to be strong at relatively low energies,
though it must still be strong at very large distances to
keep color trapped.
The effective Lagrangian is taken as [4]

Leff ¼ � 1

4g2
TrfF��F

��g � 1

g2
½ �c ðD��� þmÞc �

� F2
�

2
D� ~� �D� ~�� 2igA

g2
ð �c�5�

�~tc Þ �D� ~�

� c1ðD� ~� �D� ~�Þ2 � c2ðD� ~� �D� ~�Þ
� ðD� ~� �D� ~�Þ: (1)

Here c and ~� are the quark isodoublet and the pion
isovector, rescaled by multiplying the canonically normal-
ized fields by factors g and 1=F�, respectively. Both g and

1=F� are taken to go as 1=
ffiffiffiffi
N

p
for large N if we hold�QCD

fixed. Also, F�� is the rescaled gluon field strength tensor,

an N � N matrix,

F�� � @�A� � @�A� � i½A�; A��;
where A� is g times the canonically normalized gluon

vector potential matrix. Also, ~t is the quark isospin matrix,
D�c is the gauge- and chiral-covariant derivative of the

quark field

D�c �
�
@� � iA� þ 2i~t � ~�� @� ~�

1þ ~�2

�
c ;

andD� ~� is the chiral-covariant derivative of the pion field

D � ~� � @� ~�

1þ ~�2
:

The constituent quark mass matrix m and the axial cou-
pling gA are unconstrained by chiral symmetry, and as-
sumed to be N independent. (Sum rules have been used in
the large N limit to show that quarks have axial coupling
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gA ’ 1 [6].) The parameters c1 and c2 are coefficients of
order N.

With or without the last two terms in (1), this Lagrangian
will clearly reproduce the usual soft-pion theorems of
chiral symmetry at low energy, and as we will see, it also
gives most of the usual qualitative results [1] of the 1=N
approximation at moderate energies. The last two terms in
(1) will be needed to cancel ultraviolet divergences to
leading order in N.

Let us consider a process involving some mesons and
perhaps also glueballs. As is well known [1], if we ignore
the pions and keep only the terms for quarks and gluons in
(1), the leading connected diagrams will consist of a single
quark loop surrounding a planar mesh of gluon lines, with
insertions of operators in the quark and gluon lines repre-
senting the emission and absorption of mesons (other than
pions) and glueballs [see Fig. 1(a)]. Such diagrams make a
contribution of order N. (This assumes that the operators
representing mesons and glueballs are constructed as bi-
linears in the unrescaled quark and F�� fields. For the

moment we are ignoring the N-dependent factors needed
in these insertions to give the initial and final states created
by these operators the proper normalization, because such
factors depend only on the process considered, and hence
do not affect the relative contributions of different

diagrams for a given process. These insertions also must
include form factors, taken from the solution of the quark-
antiquark bound state problem.)
Now, suppose we include virtual pions, increasing the

total number of internal pion and quark lines by �I and
increasing the total number of vertices by �V. Since pions
have no color, this does not change the number of index
loops, so the change �� in the number � of factors of N
contributed to a connected graph will be �� ¼ �V ��I.
But the total number of loops in a connected diagram is
L ¼ I � V þ 1, so �L ¼ �I� �V, and thus �� ¼
��L. The dominant connected diagrams will thus be those
with �L ¼ 0. In other words, these are diagrams with a
single quark loop surrounding a planar mesh of gluon lines,
in which the pions add no additional loops, and therefore
can only form trees attached to the quark loop [see
Fig. 1(b)]. Here �� ¼ 0, and such diagrams therefore
make contributions of order N, just as without pions.
There is, however, a complication here: The addition of

pion lines to an unconnected diagram with C> 1 separate
connected parts may yield a connected diagram—that is,
one with a single connected component. In this case, we
have �L ¼ �I ��V þ �C, where �C � 0 is the change
in the number of connected components produced by add-
ing the pion lines, which if the graph with pions added is to
have a single connected component must be �C ¼ 1� C.
Thus the change in the number of factors of N is �� ¼
�V ��I ¼ ��Lþ 1� C. The leading diagrams for a
given C will again be those with �L ¼ 0, and now will
have �� ¼ 1� C. But if the leading graphs without pion
lines have C connected components, they are of order NC;
that is, they have � ¼ C. Hence the leading connected
graphs with pions added will have �þ�� ¼ 1, and so
will again be of order N. In contrast to the usual version of
large N QCD, in the effective field theory the leading
connected graphs can have any number of quark loops,
each surrounding a planar mesh of gluon lines, but con-
nected in a tree by single pion lines, not gluon lines [see
Fig. 1(c)]. This allows some ‘‘Zweig-rule-forbidden’’ pro-
cesses in leading order. One can have transitions between
�uu and �dd mesons by having one meson destroyed at one
quark loop and the other created at another quark loop, but
only if these mesons have the quantum numbers of the
pion. In leading order there are no pion lines connecting
quark lines within a single quark loop, so pion exchange
has no effect on the spectrum of mesons, other than those
with the quantum numbers of pions. Also, to leading order
the renormalization group equation for the ‘t Hooft cou-
pling in the effective theory is the same as in QCD, but the
integration constant � in the solution of this equation may
be smaller, giving a smaller coupling at any given energy.
The same analysis applies to the case C ¼ 0. That is, a

tree graph consisting solely of pion lines with vertices
given by the purely pionic terms in Eq. (1) makes a con-
tribution to purely pionic processes of order N, just like

FIG. 1. Some diagrams of leading order in 1=N for processes
involving pions and other mesons. Plain lines indicate quarks;
wavy lines indicate gluons; dashed lines indicate pions; and
crosses indicate insertions of quark bilinears.
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diagrams for the same processes with one or more quark
loops.

Unlike the usual experience with effective field theory
[2,3], for large N we have no additional ultraviolet diver-
gences due to loops including pion fields. The attachment
of vertices proportional to D� ~� to a quark loop does

introduce new ultraviolet divergences, but in such dia-
grams the pion field acts just as a classical external field,
so the ultraviolet divergences are limited. There are loga-
rithmic divergences from graphs with four new vertices in
the quark loop, whose form is constrained by chiral sym-
metry so that they can be canceled [7] by the terms in (1)
proportional to c1 and c2. There are quadratic divergences
from graphs with two new vertices in the quark loop, that
can be canceled by renormalization of F�. These graphs
also produce logarithmic divergences, that as remarked in
[2] can be canceled by redefinition of the pion field.
Finally, gluon corrections to a vertex inserted in a quark
line produce logarithmic divergences that can be canceled
by renormalization of gA. Thus in the large N limit the
Lagrangian (1) describes what is in effect a renormalizable
theory. Terms in the Lagrangian with more quark or F��

field factors and/or more derivatives are not needed for
renormalization in leading order in N, so such terms may
be taken to have coefficients with sufficient powers of 1=N
so that they do not contribute in leading order.

The dominant graphs remain of order N (or N2, for
reactions involving only glueballs) if the insertions in
quark and gluon lines that we make to represent the emis-
sion and absorption of mesons (other than pions) and glue-
balls are bilinear in unrescaled fields, and hence of order N
when expressed in terms of rescaled quark and gluon fields,
like the terms in (1). In particular, propagators of these
operators are of orderN for mesons (as also for the rescaled
pion field) and of order N2 for glueballs. But an operator
that is properly normalized to produce physical states must
have a propagator whose residues at one-particle poles are
N independent, so to form properly normalized operators
for creating and destroying pions and other mesons we

must include an additional factor proportional to 1=
ffiffiffiffi
N

p
,

while the properly normalized operators for glueballs must
include an additional factor 1=N. The amplitude for reac-
tions whose initial and final states contain, respectively,
M � 1 and M0 � 1 pions or other mesons and G � 0 and

G0 � 0 glueballs is then of order N1�M=2�M0=2�G�G0
, as in

the usual case without pions [1]. Since pions count here the
same as other mesons, the usual arguments show that the
singularities of scattering amplitudes for mesons and glue-
balls consist solely of meson poles in various channels.

Finally, let us consider the leading connected terms in
the interaction of the N quarks making up a baryon. Witten
[8] has shown that in pure QCD, without pions, the leading
contributions to a connected graph involving n quarks is of
order N1�n, but the number of ways of selecting these n
quarks from the N quarks in the baryon is N!=ðN � nÞ!n!,

which for N � n goes as Nn, so that the sum of these
connected graphs is of order N. In the effective theory
including pions, we have to take into account the possibil-
ity of forming a connected graph from a disconnected
diagram with C separate connected parts, linking them
together with pion lines.
First consider the N dependence of such a disconnected

diagram before we add the pion lines [see Fig. 2(a)]. If the
rth connected part involves nr quark lines, then the total
contribution of such parts is of order

YC

r¼1

N1�nr
N!

C!ðN �P
r
nrÞ!

Q
r
nr!

! NC

C!
Q
r
nr!

;

where the first factor is the contribution of the C connected
parts, and the second factor is the number of ways of
selecting the quarks in these C connected parts. Just as
we saw in the meson case, the addition of pion lines to give
a connected diagram supplies an additional factor
N1�C��L, where�L is the increase in the number of loops,
so the leading graphs are those in which the addition of
pions does not increase the number of loops, and these
graphs are of order N, as in pure QCD [see Fig. 2(b)].
This picture raises issues of double counting of baryons

[9]. The purely pionic part of the Lagrangian (1) may have
Skyrmion solutions, with masses of orderN [8], in addition
to the N-quark states described above. Indeed, the last two
terms in (1) are just the sort needed to stabilize the
Skyrmion. But although in this theory purely pionic inter-
actions are correctly described at low energy in the tree
approximation by the purely pionic terms in (1), this is not
true at the moderate energies of order �QCD probed in the

structure of Skyrmions. At such energies, to leading order
in N we must also take into account quark loops, each
surrounding a planar mesh of gluon lines, which can take
the place of vertices in a tree of pion lines. Nothing is
known about the existence of Skyrmion solutions when
such quark loops are taken into account.
This work leaves open several questions: Can (1) be

derived from QCD by some process of ‘‘integrating out’’
degrees of freedom? If so, what is the relation between the
integration constants � for the ‘t Hooft couplings in QCD
and the effective theory? And will this effective field

FIG. 2. Some diagrams of leading order in 1=N for baryon
structure. Notation same as Fig. 1.
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theory provide a basis for practical calculations of hadronic
phenomena at moderate energies?
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