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Jacobson and Sotiriou showed that rotating black holes could be spun up past the extremal limit by the

capture of nonspinning test bodies, if one neglects radiative and self-force effects. This would represent a

violation of the cosmic censorship conjecture in four-dimensional, asymptotically flat spacetimes. We

show that for some of the trajectories giving rise to naked singularities, radiative effects can be neglected.

However, for these orbits the conservative self-force is important, and seems to have the right sign to

prevent the formation of naked singularities.
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The most general stationary vacuum black-hole (BH)
solution of Einstein’s equations in a four-dimensional,
asymptotically flat spacetime is the Kerr geometry [1],
characterized only by its mass M and angular-momentum
J. Solutions spinning below the Kerr bound cJ=GM2 � 1
possess an event horizon and are known as Kerr BHs.
Solutions spinning faster than the Kerr bound describe a
‘‘naked singularity,’’ where classical general relativity
breaks down and (unknown) quantum gravity effects take
over. It was hypothesized by Penrose that classical general
relativity encodes in its equations a mechanism to save it
from the breakdown of predictability. This is known as the
cosmic censorship conjecture (CCC) [2], which asserts that
every singularity is cloaked behind an event horizon, from
which no information can escape.

There is no proof of the CCC. Indeed there are a few
known counter examples, but these require either extreme
fine-tuning in the initial conditions or unphysical equations
of state [2], or are staged in higher-dimensional spacetimes
[3]. Moreover, all existing evidence indicates that Kerr
BHs are perturbatively stable [4], while Kerr solutions
with cJ=GM2 > 1 are unstable [5]. Thus, naked singular-
ities cannot form from BH instabilities.

Because naked singularities appear when cJ=GM2 > 1,
it is conceivably possible to form them by throwing matter
with sufficiently large angular momentum into a BH. With
numerical-relativity simulations, the authors of Ref. [6]
found no evidence of a formation of naked singularities
in a high-energy collision between two comparable-mass
BHs: either the full nonlinear equations make the system
radiate enough angular momentum to form a single BH, or
the BHs simply scatter. The case of a test particle plunging
into an extremal Kerr BH was studied by Wald [7], who
showed that naked singularities can never be produced,
because particles carrying dangerously large angular mo-
mentum are just not captured.

Recently, Jacobson and Sotiriou (JS) [8] (building on
Refs. [9]) have shown that if one considers an almost
extremal BH, nonspinning particles carrying enough an-
gular momentum to create naked singularities are allowed
to be captured [10]. As acknowledged by JS, however, their
analysis neglects the conservative and dissipative self-
force (SF), and both effects may be important [11]. In
this Letter we will show that the dissipative SF (equivalent
to radiation reaction, i.e., the energy and angular momen-
tum losses through gravitational waves) can prevent the
formation of naked singularities only for some of JS’
orbits. However, we will show that for all these orbits the
conservative SF is comparable to the terms giving rise to
naked singularities, and should therefore be taken into
account. Hereafter we set G ¼ c ¼ M ¼ 1.
JS considered a BH with spin a � J=M2 ¼ 1� 2�2,

with � � 1, and a nonspinning test particle with energy
E, angular momentum L, and mass m. Neglecting the
dissipative and conservative SF, the particle moves on a
geodesic, and JS identified a class of equatorial geodesic
orbits such that (i) the particle falls into the BH, which
implies an upper limit on the angular momentum,
L< Lmax, and (ii) the BH is spun up past the extremal
limit and destroyed, which implies a lower limit on the
angular momentum, L> Lmin. Therefore,

Lmin ¼ 2�2 þ 2Eþ E2 < L< Lmax ¼ ð2þ 4�ÞE: (1)

Imposing Lmax > Lmin then yields

Emin ¼ ð2� ffiffiffi
2

p Þ� < E< Emax ¼ ð2þ ffiffiffi
2

p Þ�: (2)

Finally, JS checked that these intervals contain both bound
orbits (i.e., orbits that start with zero radial velocity at finite
radius) and unbound orbits (i.e., orbits that start from
infinity). Parametrizing the above interval as

E ¼ Emin þ xðEmax � EminÞ ¼ Emin þ 2x
ffiffiffi
2

p
� (3)
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L ¼ Lmin þ yðLmax � LminÞ ¼ Lmin þ 8y�2ð1� xÞx (4)

with 0< x< 1, 0< y< 1, the final spin is

aJSf ¼ aþ L

ð1þ EÞ2 ¼ 1þ 8�2ð1� xÞxyþOð�3Þ> 1; (5)

and the spin up is due to the terms quadratic in �.
Let us first investigate how radiation reaction affects JS’

analysis. Taking radiation losses Erad and Lrad into account,
Eq. (5) becomes

af ¼ 1þ 8�2ð1� xÞxyþ 2Erad � Lrad þOð�3Þ: (6)

Let us focus on unbound geodesics [12], and following JS
assume E=m � 1 and L=m � 1 (null orbits). These orbits
are characterized by the impact parameter b ¼ L=E alone.

From Eqs. (1) and (2), JS’s orbits have L ¼ bE, with b ¼
2þ 4�f1� 2xðx� 1Þðy� 1Þ=½2þ ffiffiffi

2
p ð2x� 1Þ�g. Varying

x and y between 0 and 1, one obtains b ¼ 2þ ��, with

2
ffiffiffi
2

p
< �< 4. However, because bph ¼ 2þ 2

ffiffiffi
3

p
�þ

Oð�2Þ is the impact parameter of the circular photon orbit

(‘‘light ring’’), only orbits with 2
ffiffiffi
2

p
< �< 2

ffiffiffi
3

p
are un-

bound. When � � 2
ffiffiffi
3

p
, these orbits are expected to circle

many times around the light ring, so the radiation reaction
could prevent the formation of naked singularities or at
least invalidate JS’ analysis. In fact, for � arbitrarily close

to 2
ffiffiffi
3

p
, the particles would orbit around the light ring an

arbitrarily large number of times, and gravitational-wave
emission must be important [13]. We will show, however,
that this is not true for all of JS’ orbits.

Considering the geodesic equations for null equatorial
orbits with impact parameter b ¼ bphð1� kÞ, with k �
� � 1, one finds that the radial potential—defined as
VrðrÞ � ðdr=d�Þ2 with � an affine parameter—has a mini-
mum at r ¼ rmin ¼ rph þOðkÞ, near which

d�

dr
�

�
8

3
þ

ffiffiffi
3

p
2�

��
8ffiffiffi
3

p k�þ 3ðr� rminÞ2
��1=2

: (7)

Integrating from rmin � �r2 to rmin þ �r1, with �r1;2 �
k�, the number of cycles near the minimum is

Ncycles�
Z rminþ�r1

rmin��r2

d�

dr

dr

2�
¼½AþB logðk�Þ�

�
8

3
þ

ffiffiffi
3

p
2�

�
(8)

A and B being constants depending on the integration
interval. Fixing �, and thus the BH spin, we can see that
Ncycles depends on logk, and diverges when k ! 0 [13].

Because the fluxes are proportional to Ncycles, we have

Erad ¼�Eð�Þ �Ncycles; Lrad ¼�Lð�Þ �Ncycles; (9)

where �E and �L are the fluxes in a single orbit. From a
frequency-domain analysis [14], �E=�L must equal the

light-ring frequency, �ph � 1=2� ð ffiffiffi
3

p
=2Þ�; hence,

�Eð�Þ ¼ E1ð�Þð1þ e2�Þ; (10)

�Lð�Þ ¼ 2E1ð�Þ½1þ ð ffiffiffi
3

p þ e2Þ��: (11)

Here E1ð�Þ is the energy flux for a single orbit at leading
order in �, and e2 is an undetermined coefficient.
Semiquantitative arguments by Chrzanowski [15] and
more rigorous analytical calculations by Chrzanowski
and Misner [16] show that,

E1 	 ðr� rHÞE2 	 �E2 	 �3 (12)

(later we will discuss an additional proof of this scaling).
At leading order in �, this results in

Erad ¼ �Eð�Þ � Ncycles 	 logðk�Þ�2: (13)

This scaling still depends on k, but the dependence is
logarithmic, so unless k is really small Erad 	 logð�Þ�2.
Although terms of order �2 log� seem to dominate Eq. (6),

because of Eqs. (9)–(11) one has Lrad � 2Erad ¼
2

ffiffiffi
3

p
�E1ð�ÞNcycles 	 �3 log�. Therefore JS’ analysis is

valid for these trajectories. However, if k & expð�1=�Þ,
Erad 	 � and Lrad � 2Erad 	 �2, and JS’ analysis is not
valid because radiative effects cannot be neglected.
To test the above picture we used a time-domain code

[17] solving the inhomogeneous Teukolsky equation [14]
that describes the gravitational perturbations of Kerr BHs
in the context of extreme mass-ratio binaries. This code has
been successfully used in many scenarios, including an
extensive study of recoil velocities from extreme mass-
ratio binaries [18]. Because, for almost extremal BHs and
in Boyer-Lindquist coordinates, the particle’s orbit, the
light ring, and the horizon are extremely close, we modeled
the test particle to have a fixed width in the ‘‘tortoise’’
coordinate r
 as opposed to r [19], and checked that our
results are independent of the particle’s width when that is
sufficiently small. (More details on these tests will be
presented in a follow-up paper.)
We consider BHs with a ¼ 0:99, 0.992, 0.994, 0.996,

0.998, and 0.999 and geodesics having E ¼ ðEmax þ
EminÞ=2 ¼ 2�, L ¼ bphEð1� kÞ with k ¼ 10�5, and m ¼
0:001 � E. Using these geodesics and integrating their
cycles from r ¼ 1:05rph to r ¼ ðrph þ rhorÞ=2 (rph being

the light-ring radius), we get A � 0:3294, B � �0:019 41
for the coefficients in Eq. (8). Assuming E1 ¼ e1�

n, we fit
the energy and angular-momentum fluxes at infinity with
Eqs. (9)–(11), obtaining n � 2:91. Because this is very
close to the theoretical value n ¼ 3, we assume n ¼ 3
and fit the data with only two free parameters, e1 and e2,
obtaining e1 ¼ 136:97 and e2 ¼ �4:423. With these val-
ues, Eqs. (9)–(11) reproduce the numerical data to within
1%–3% for a < 0:999, which is comparable to the data
accuracy. For a ¼ 0:999, however, the fluxes predicted by
Eqs. (9)–(11) are about 12% larger than the numerical
ones. To investigate this issue, we ran an additional
simulation for a ¼ 0:9998, which seems to confirm that
Eqs. (9)–(11) overpredict the fluxes for very high spins. At
this stage it is not clear whether this is a numerical problem
(simulations are very challenging for a � 1) or whether
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this is due to the simplified analytical derivation of
Eqs. (9)–(11). We will investigate this issue in the
follow-up paper, but because the numerical fluxes are
smaller than expected, it only reinforces our conclusion
that there are orbits giving rise to naked singularities even
when radiation reaction is taken into account.

Since Lrad�2Erad¼2
ffiffiffi
3

p
�E1ð�ÞNcycles	�3 logðk�Þ>0,

Eq. (6) predicts that radiation reaction will decrease the
final spin af. Using the above values for A, B, and e1, and

x ¼ 0:5 and y � 2
ffiffiffi
3

p � 3þ 4�=3 corresponding to our
geodesics, Eq. (6) predicts af < 1 for � * �crit 	 0:003.

However, for sufficiently large spins, the term Lrad �
2Erad 	 �3 logð�Þ is subdominant and af > 1. Numerical

results confirm this expectation: in Table I, we show the
BH spin af after absorbing the particle, taking into account

radiation reaction. As can be seen, af > 1 already for a ¼
0:9998, corresponding to � ¼ 0:01> �crit. This is because,
as already mentioned, Eqs. (9)–(11) overpredict the fluxes
for a * 0:999.

Moreover, even the result that af < 1 for � * �crit is

questionable. Indeed, the fluxes down the horizon might
destroy the BH before the particle is captured, while our
code only calculates the fluxes at infinity. This is sufficient
for our purposes because we used the code only to test the
scaling (9)–(11), which is expected to hold both for the
fluxes at infinity and down the horizon, since its derivation
is generic. Once validated, that scaling implies that for
sufficiently large spins both fluxes are smaller than the
terms giving rise to naked singularities [i.e., the quadratic
terms in Eq. (6)]. For � * �crit, instead, the fluxes at infinity
decrease the final spin to afin < 1. However, in such a
situation also the fluxes down the horizon, Lrad;in and

Erad;in, are expected to be important (because the fluxes

are produced when the particle sits at the light ring, which
roughly corresponds to the maximum of the effective
potential for gravitational waves), and could destroy the
horizon before the particle is captured. In fact, the spin

change is �a ¼ Lrad;in � 2Erad;in ¼ Erad;inð1=�ph � 2Þ �
2

ffiffiffi
3

p
�Erad;in, because Erad;in=Lrad;in ¼ �ph � 1=2�

ð ffiffiffi
3

p
=2Þ�. Since �ph is larger than the horizon’s frequency

�hor � 1=2� �, radiative emission is nonsuperradiant and
Erad;in > 0; hence, �a > 0. Thus, the ingoing fluxes in-

crease af.

So far we have shown that radiation reaction cannot
prevent the formation of naked singularities, unless the
impact parameter is extremely close to the light ring’s
impact parameter bph. We will now show, however, that

for all of JS’ orbits the conservative SF is as important as
the terms giving rise to naked singularities.
Let us consider a BH with gravitational radius Rg ¼

2 Gm=c2 in a curved background with curvature radius
L � Rg [20]. The rigorous way of studying the motion of

this BH is to set up a proper initial value formulation, but a
reasonable alternative for practical purposes is to use a
matched asymptotic expansion [21]. Near the BH (i.e., for
r < ri, ri being a radius � L), the metric is ginternal ¼
gBH þH1ðr=LÞ þH2ðr=LÞ2 þ . . . , where gBH is the met-
ric of an isolated BH and H1ðr=LÞ, H2ðr=LÞ2 are correc-
tions due to the ‘‘external’’ background. Far from the BH
(i.e., for r > re, re being a radius � Rg), the metric is

instead gexternal ¼ gbackground þ h1ðRg=LÞ þ h2ðRg=LÞ2 þ
. . . , i.e., the background metric plus perturbations due to
the BH’s presence. Because Rg � L, there exists a region

re < r < ri where both pictures are valid and the two
metrics can be matched. Doing so, one finds that the BH
equations of motion are [21]

u�r�u
� ¼ f�cons þ f�diss þOðRg=LÞ2; (14)

where r is the connection of the background spacetime.
The terms f�cons and f�diss are OðRg=LÞ, and are known as

the conservative and dissipative SF. Remarkably, it turns
out that Eq. (14) is the geodesic equation of a particle in a
‘‘perturbed’’ metric ~g ¼ gþ hR, where hR is a smooth
tensor field of order OðRg=LÞ:

~u � ~r�~u
� ¼ 0 (15)

(the connection ~r and the four velocity ~u� being defined
with respect to the perturbed metric ~g ¼ gþ hR).
The dissipative SF amounts to the energy and angular-

momentum fluxes considered earlier. Taking for instance
the energy loss, Eq. (14) and E ¼ �pt give dE=d�¼
�mfdisst ¼OðRg=LÞ2. Assuming now that the background

spacetime is a BH with mass M	L�Rg, and specializ-

ing to orbits near the horizon, one has dt=d�	rH=
ðr�rHÞ, which gives dE=dt	 ðr� rHÞOðRg=LÞ2.
A comparison of this scaling with our numerically vali-
dated scaling (12) shows that for a BHwith E � m the size
entering the matched asymptotic expansion above (the
‘‘physical’’ size) is Rg ¼ 2 GE=c2 and not Rg ¼
2 Gm=c2. This is no surprise, as the physical size associ-
ated with an ultrarelativistic BH is dictated by its energy
and not by its mass, because in general relativity energy
gravitates. Remarkably, however, we were able to test this
fact with the numerical results presented earlier. Further
evidence comes from boosting the Schwarzschild line
element to the speed of light, keeping the total energy

TABLE I. Initial and final BH spin after absorbing a particle

with energy E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞp

and angular momentum L ¼
bphEð1–10�5Þ, neglecting conservative SF effects, but not radia-

tion reaction. We also show the final spin without radiation
reaction (aJSf ) predicted by JS.

a 0.99 0.992 0.994 0.996 0.998 0.999 0.9998

af 0.882 0.928 0.961 0.984 0.997 0.9996 1.000 06

aJSf 1.0043 1.0035 1.0026 1.0018 1.0009 1.000 45 1.000 09
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fixed. One gets the Aichelburg-Sexl metric, which depends
on the total energy E and not on the rest mass [22]:
this boosted BH absorbs particles within a distance
	E from it.

Because a BH’s size is determined by maxðE;mÞ * �,
the conservative SF affects JS’ analysis. This is easier to
see from Eq. (15) [although the same result can be obtained
from Eq. (14): see Ref. [23]]: because the metric ‘‘pertur-
bation’’ hR isOðRg=LÞ ¼ Oð�Þ, the effective potential for
the radial motion differs from the ‘‘geodetic’’ one by
OðRg=LÞ ¼ Oð�Þ [23,24]. Therefore, bph changes by

�bph ¼ OðRg=LÞ ¼ Oð�Þ. Because JS’ orbits have bph �
b ¼ OðRg=LÞ ¼ Oð�Þ, the conservative SF may prevent

them from plunging into the horizon. This effect is intui-
tive: if the particle’s size is 	�, finite-size effects are
important for impact parameters b ¼ bph þOð�Þ.

A calculation of �bph is not doable with present tech-

nology [25], but we can estimate its sign. Because of frame
dragging, for a ¼ 1� 2�2 one has bph ¼ 1=�ph þOð�Þ2.
While the SF effect on�ph has not been calculated yet, the

authors of Ref. [23] calculated the innermost stable circular
orbit (ISCO) frequency shift for a ¼ 0, and showed that the
conservative SF increases �ISCO. It therefore seems plau-
sible that �ph should follow the same behavior. While

approximate methods for calculating the conservative SF
in Kerr spacetimes exist [26,27], they have problems for
large spins, and the definitive answer to whether bph in-

creases or decreases for a � 1 will only be available when
a rigorous SF calculation [25] is performed. However,
assuming that the a ¼ 0 behavior of Ref. [23] holds also
for a � 1, one obtains that�ph increases due to the SF, and

therefore bph should decrease, possibly preventing the

capture of the particles with dangerously large L and the
formation of naked singularities.

In conclusion, we have shown that radiation reaction
effects can prevent the formation of naked singularities
only for some of the orbits for nonspinning particles
around almost extremal Kerr BHs identified by JS.
However, for all orbits capable of producing naked singu-
larities, the conservative SF is non-negligible and seems to
have the right sign to prevent the particles from being
captured, thus saving the CCC.
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