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One of the most fundamental theorems in statistical mechanics is the Khinchin ergodic theorem, which
links the ergodicity of a physical system with the irreversibility of the corresponding autocorrelation
function. However, the Khinchin theorem cannot be successfully applied to processes with infinite second
moment, in particular, to the relevant class of Lévy flights. Here, we solve this challenging problem.
Namely, using the recently developed measure of dependence called Lévy correlation cascade, we derive a
version of the Khinchin theorem for Lévy flights. This result allows us to verify the Boltzmann hypothesis

for systems displaying Lévy-flight-type dynamics.
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Introduction.—Recently, ergodic properties of systems
exhibiting anomalous behavior has attracted the growing
attention of researchers in various fields of physics and
related sciences. Ergodicity breaking was reported in blink-
ing quantum dots [1,2]. A method of investigating weak
ergodicity breaking for continuous-time random walks was
introduced in [3]. This approach was further extended to
describe ergodic properties of subdiffusion processes in the
framework of the fractional Fokker-Planck equation [4,5].
Ergodicity of stochastic dynamics described by the gener-
alized Langevin equations was studied in [6,7]; see also
[8—11]. The relationship between ergodicity and irreversi-
bility of anomalous systems was investigated in detail in
[12]. For the analysis of the time average mean-square
displacement of fractional Brownian motion see [13,14].

Verification of the Boltzmann ergodic hypothesis for a
given system is one of the most fundamental problems in
statistical mechanics. The key result in this field is the
celebrated Khinchin theorem (KT) [15], which states that
if the autocorrelation function vanishes at infinity (the
property of irreversibility), then the process is ergodic. A
good reconstruction of the role of Khinchin’s approach to
ergodic problem can be found in [16]. However, the KT
can be successfully applied only under the assumption that
the second moment (and thus the autocorrelation function)
of the considered process is finite. This assumption is
obviously fulfilled by many processes, in particular, by
the relevant family of Gaussian processes.

Nonetheless, the situation gets more complicated while
considering anomalous diffusion processes with infinite
second moment, in particular, processes with «-stable
marginal distributions [17,18]. These processes, being the
natural generalization of Gaussian ones, are of great inter-
est in physics, because of their fundamental role in the
modeling of Lévy-flight-type dynamics. This kind of
anomalous dynamics has been recently observed in a num-
ber of systems, including: animal foraging patterns, bulk
mediated surface diffusion, transport in micelle systems or

0031-9007/10/105(26)/260603(4)

260603-1

PACS numbers: 05.70.—a, 05.40.—a

heterogeneous rocks, single molecule spectroscopy and
wait-and-switch relaxation, to name only few (see [19]
and references therein). Therefore, determining ergodic
or even more chaotic properties of «-stable processes
[17], which are the fundamental mathematical models of
Lévy flights, is an important and timely problem.

In this Letter we develop a rigorous approach to study
ergodicity of anomalous diffusion processes (Lévy flights).
By the use of a new universal tool—the Lévy correlation
cascade [20], which is an analogue of n-point correlation
function for the processes with infinite second moment, we
derive a version of the KT for Lévy flights. We illustrate the
strength of the obtained theorem by applying it to a number
of well-known Lévy flight processes (a-stable Ornstein-
Uhlenbeck process, fractional «-stable noise, etc.), and
present some numerical results. Finally, we indicate im-
plications of the KT to three challenging problems of
contemporary physics.

Lévy flights and correlation cascade.—A problem we
are going to discuss now is how to verify ergodicity of a
a-stable process Y(z) of the general form

Y(r) = / KexdL, (v, tER (1)
Here, K(t, x) is the kernel function and L, (x) is the sym-
metric a-stable Lévy motion with the Fourier transform
(e*tay = o=l" 0 < @ <2. We additionally assume
that Y(r) is stationary (for the explicit representation of
the kernel K(z, x) in the stationary case; see [21]). The
assumption about stationarity of the process Y(¢) is abso-
lutely crucial. Its physical meaning is obvious—the system
is in thermal equilibrium. From the mathematical point of
view, stationarity is necessary for the Birkhoff ergodic
theorem [22] to apply. This in turn assures validity of the
Boltzmann hypothesis [23].

It should be underlined that every stationary symmetric
a-stable process (satisfying the additional very weak sepa-
rability condition) can be represented in form (1) (see [18]
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for the details). Thus, the definition of Y(z) is very general,
and there is a wide range of physically relevant Lévy flight
processes admitting representation (1). It includes the (frac-
tional) a-stable Ornstein-Uhlenbeck processes, moving-
average processes, and (fractional) a-stable noises.

Note that, in contrast to the Gaussian case (@ = 2), for
a-stable processes with 0 < @ < 2, the second moment is
infinite. Thus, the autocorrelation function can no longer
be used to determine ergodic properties of Y(z). In particu-
lar, the KT cannot be applied. Therefore, it is necessary to
develop a different mathematical tool, which will substi-
tute the autocorrelation function in the a-stable case.

The Lévy correlation cascade corresponding to the pro-
cess Y(¢) admitting representation (1), is defined as [20]

R(ty, ..o ty) = f * min{lK(ty, 0l ., 1K (6, )1,

with n € N and ¢, ..., t, € R. In particular, for the sta-
tionary process Y(7), the function

R(0,7) = f_w min{|K(©O, 0|, |K(, Oledx  (2)

is the a-stable analogue of the autocorrelation function.
R(0, 1) will be called the Lévy autocorrelation function. As
we will show, R(0, ) plays a fundamental role in determin-
ing ergodic properties of Lévy flights. For more details on
the general properties of Lévy correlation cascades, see
[20,24,25].

Let us now derive the following main result of the
Letter:

Khinchin theorem for Lévy flights.—If the Lévy autocor-
relation function satisfies

tlimR(O, ) =0, 3)

then the stationary process Y(¢) is ergodic. Moreover, the
Boltzmann hypothesis is true; i.e., the temporal and en-
semble averages coincide

tim 7 [ ¥war = v, @

provided that (Y (0)) is well defined.

To prove the above result, let us first note that the refined
version of the classical Maruyama’s mixing theorem
[26,27] states that Y(¢) is ergodic if the Lévy measure v,
of the vector (Y(0), Y(z)) satisfies

limyy{(x, y): |xy| > 8} =0 forevery §>0. (5)
1—00
Next, by [28], the following relation between R(0, ¢) and
the Lévy measure v, holds for every 6 > 0,
R(0, 1) = ¢8%vo{(x, y): min{lx], [y} > &} (6)

Here, ¢ > 0 is the appropriate constant. Next, let us choose
€ > 0 arbitrary small and denote by v, the Lévy measure
of Y(0). Then, there exists n € N, such that vy{x: |x| >

n} < % Moreover, we have

vod(x, y): xy| > 6} =
= vo{(x, y): min{|x], [y[} > 8/n} + vo{lx| > n v Iyl >n}
= vod(x, y): min{|x|, |y[} > 8/n} + 2voix: [x] > n}
= voA(x, y): min{|x|, |y} > 6/n} + €.

Consequently, if lim,_,,,R(0, r) = 0, then by (6) also con-
dition (5) holds true, which in turn implies ergodicity of
Y (7). This shows that the sufficient condition for the Lévy
flight process Y(r) to be ergodic, is that the corresponding
Lévy autocorrelation function R(0, r) vanishes at infinity.
Moreover, if Y(¢) is ergodic, then by the Birkhoff theorem
[22] we obtain (4).

Since the classical KT was derived many years before
Maruyama [26], Khinchin restricted his considerations
only to the processes with finite second moment. Here,
by the use of Lévy correlation cascade and Maruyama’s
theorem, we were able to extend the result of Khinchin to
the processes with infinite second moment. The above
theorem shows that R(0, f) is a powerful mathematical
tool for studying ergodic properties of a-stable processes,
and that it is a proper analogue of the autocorrelation
function. Its great advantage is the fact that R(0, r) can be
easily calculated for many relevant processes, as the fol-
lowing examples show:

Ornstein-Uhlenbeck process.—The first example is the
a-stable Ornstein-Uhlenbeck process [17,18] defined as

V() = o [ "ML ), Ao >o.
For a =2 we recover the classical Gaussian Ornstein-
Uhlenbeck process. Using (2) with K(z, x) = ge A9 x
1{x <1}, we get that the Lévy autocorrelation function
corresponding to Y;(¢) satisfies R(0, t) * e~ ** as t — oo,
Thus, using the KT for Lévy flights, we get that Y,(z) is
ergodic. Equivalently, we obtain that the velocity process
in the a-stable Klein-Kramers model [29] is ergodic.

In Fig. 1 (top panel) we observe a sample trajectory of
Y,(#). The bottom panel of Fig. 1 depicts the behavior of its
temporal average. Clearly limT_,m% [iY(dr=0=
(Y{(0)), which confirms validity of the Boltzmann hy-
pothesis. In Fig. 2 we see the behavior of the Lévy auto-
correlation function corresponding to Y, (7), calculated for
various parameters «. In each case R(0, 7) decays to zero,
which confirms ergodicity of Y, (7).

Moving-average processes.—The previously considered
example belongs to the wider family of the so-called
moving-average processes [17,18]. These processes admit
the following representation

o= [ p—vaL.m. ™

Here, the kernel function f is assumed to be nonnegative,
monotonically decreasing, and it satisfies the integrability
condition [ f*(x)dx < oo, [18]. The Lévy autocorrelation
function of Y,(7) yields R(0,7) o« [® f*(x)dx, thus it
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FIG. 1 (color online). In the top panel we observe a simulated
sample trajectory of the a-stable Ornstein-Uhlenbeck process
Y (¢). The bottom panel depicts the behavior of the temporal
average corresponding to the simulated trajectory of Y,(z).
Clearly, limy_., % [7 Y,(t)dt = 0 = (¥,(0)), which confirms va-
lidity of the Boltzmann hypothesis. The parameters are: a« = 1.2,
og=A=1.

converges to zero as t — 0. Consequently, by the KT for
Lévy flights, Y,(¢) is ergodic.

a-stable noise—The process of increments of the
a-stable Lévy motion, defined as

l,(t)=L,(t+1)— L,(¢), reN, 8)

is a stationary sequence of independent and identically
distributed random variables. [,(r) is called a-stable
noise. It can be represented in the following way [,(f) =
L,(t+1)— Ly(1) = [*, 1y<.<i+13dL ,(x). Therefore, by
(2), the Lévy autocorrelation function of [, (r) equals zero
(this corresponds to the well-known property that indepen-
dent random variables are uncorrelated). Thus, by the KT
for Lévy flights, the a-stable noise is ergodic.

Fractional a-stable noise.—Let0 < a =2, 0< H <.
Then the process

Law(®) = [ 16 =07/ (=01 JaL )
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FIG. 2 (color online). Asymptotic behavior of R(0, f) corre-
sponding to the a-stable Ornstein-Uhlenbeck process Y, (t). For
each a the function R(0, ) tends to zero as r— oo, which
confirms ergodicity of Y ().

is called the fractional a-stable motion [17,18]. Here x, =
max{x, 0}. L, y(7) is H self-similar with stationary incre-
ments. For a = 2 it reduces to the well-known fractional
Brownian motion, which was used by Mandelbrot and Van
Ness to model long-range dependence phenomena [30].
Next, the process of increments

la,H(t) = Loz,H(t + 1) - La,H(t)’ (9)

t € N, is called the fractional a-stable noise. Contrary to
the previously considered noise /,(t), the dependence be-
tween even very distant time points of [/, 4(7) is still very
strong. Therefore, the fractional «-stable noise is often
used to model phenomena displaying both Noah and
Joseph effect [25,31,32]. After some tedious calculations,
one proves that the Lévy autocorrelation function of /,, ;(7)
yields lim,_R(0, ) = 0. Therefore, the KT for Lévy
flights assures that the fractional a-stable noise is ergodic.
Harmonizable processes.—An important subclass of sta-
ble processes, for which we observe ergodicity breaking,
is the class of harmonizable processes [17]. Every
stable harmonizable process has the form X, (1) =
Re [ €*dW(z), where W is the appropriate a-stable sto-
chastic measure. Contrary to the Gaussian case, stable
harmonizable processes are never ergodic and cannot be
represented in the moving-average form (7); see [17]. A
complete description of nonergodic stable processes can be
found in [33]. Applying the Maruyama’s mixing theorem,
we obtain from (5) and (6) that condition (3) does not hold
for harmonizable processes. Ergodicity breaking for an
exemplary harmonizable process is depicted in Fig. 3.
Concluding remarks.—In this Letter we have derived the
KT for Lévy flights. This result allows us to determine
ergodic properties and verify the Boltzmann hypothesis for
the systems exhibiting anomalous Lévy flight behavior.
The main obstacle in studying ergodicity of Lévy flights
is the divergence of the second moment. Therefore, the
classical Khinchin approach based on the autocorrelation
functions, can no longer be used. The method of determin-
ing ergodic properties of Lévy flights proposed in this
Letter relies on the Lévy autocorrelation function, which

t
10000
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FIG. 3 (color online). The temporal average corresponding
to the harmonizable process X, (1) = Re [g e2dW(z). Here, W
is the isotropic symmetric «-stable random measure with
the control measure equal to ye *dz, and vy is the uniform
measure on the circle [18]. Since X, is symmetric, we get that
(X,()) = 0. Thus, the time and ensemble averages do not
coincide. Here o = 1.6.
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is the a-stable analogue of the standard autocorrelation
function. We have shown that in the Lévy flight case, the
irreversibility condition considered by Khinchin needs to
be replaced by the similar one (3) given in terms of the
Lévy autocorrelation function.

Verification of the Boltzmann hypothesis for a given
physical system is one of the fundamental problems of
statistical physics. Knowing that the average of a process
parameter over time and the average over the space are the
same, one can equivalently observe one realization for a
long time or many independent short realizations. This is
particularly important in the context of conducting physi-
cal experiments. Validity of the Boltzmann hypothesis
allows us to optimize the experimental methods, since
then it is enough to observe experimentally only one long
trajectory of a process.

Our results show that the transport of light in special
optical materials (Lévy glass) [34] is ergodic. This follows
immediately from example (8) with « = 0.948 = 0.09.
Also, the motion of mRNA molecules inside bacterial cyto-
plasm [35], which can be described by the fractional stable
motion [36], is ergodic. This is the consequence of example
(9) with a = 1.85. For the two above-mentioned experi-
ments, as well as for the other experiments in which Lévy
flight dynamics is observed, validity of the Boltzmann
hypothesis is verified using the KT for Lévy flights.

Another interesting implication of the KT for Lévy
flights concerns searching strategies. In their foraging pat-
terns, animals tend to perform Lévy flights [37-39]. The
advantage of such strategy is that it reduces over-sampling
and thus optimizes the intermittent search. KT theorem for
Lévy flight implies that Lévy searching strategies are er-
godic. Since the successive jumps in such strategies are the
independent «-stable random variables, example (8) as-
sures that Lévy foraging patterns are ergodic. This shows
that such animal strategies have another great advantage—
since the dynamics is ergodic, every region of the scanned
territory will be eventually visited by the animal [17]. This
surprising result explains why Lévy strategies are advanta-
geous and therefore so common in nature.

We underline that the introduced method of determining
ergodic properties can be successfully applied also in the
general case of stationary processes with infinitely divis-
ible marginal distributions [17], including physically rele-
vant subclasses (Pareto, gamma, Mittag-Leffler, and
tempered stable).
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