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Nonequilibrium bosonization technique is used to study current fluctuations of interacting electrons in a

single-channel quantum wire representing a Luttinger liquid (LL) conductor. An exact expression for the

time resolved full counting statistics of the transmitted charge is derived. It is given by the Fredholm

determinant of the counting operator with a time-dependent scattering phase. The result has a form of

counting statistics of noninteracting particles with fractional charges, induced by scattering off the

boundaries between the LL wire and the noninteracting leads.
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Fluctuations are among the most fundamental concepts
arising in statistical physics. In recent years, nonequilib-
rium noise was measured in a variety of electronic systems,
such as quantum point contacts [1], diffusive mesoscopic
conductors [2], and fractional quantum Hall edges [3]; see
Ref. [4] for review. With the decrease of a sample size,
characterization of current fluctuations by the second mo-
ment only becomes insufficient. This has triggered recent
interest in higher-order correlation functions of current
statistics. The third cumulant of the noise was measured
in recent experiments [5]. A more complete characteriza-
tion of current fluctuations is the full counting statistics
(FCS), introduced by Levitov et al. [6]. This fascinating
theoretical approach yields information about all moments
of the number of electrons transferred (over a given time
interval) through a terminal in a multiterminal system,
current cross-correlations and entanglement, and large cur-
rent fluctuations.

For noninteracting systems, the problem of FCS is well
understood by now within several complementary ap-
proaches, including the Fredholm determinant formalism
[6,7], the �-model field-theoretical description [8], as well
as the kinetic theory of fluctuations [9].

Much less remains known concerning fluctuations in
interacting systems. This problem is of particular interest
at low dimensions, where interaction affects the nature of
the system in an essential way. This is the case for the FCS
of current through a quantum dot in the Coulomb blockade
regime [10], for the FCS of quantum impurities [11], and
wires in an Ohmic environment [12], [13]. The interac-
tion also affects dramatically the physics of one-
dimensional (1D) fermionic systems where a strongly cor-
related state—Luttinger liquid (LL)—is formed [14,15].
Experimental realizations of LL include carbon nanotubes,
semiconductor, metallic and polymer nanowires, as well as
quantum Hall edges. Recent experiments studied the shot

noise in carbon nanotubes [16]. Nonequilibrium physics of
carbon nanotubes and quantum Hall edges has been ex-
plored through tunneling spectroscopy [17] and Mach-
Zehnder-iterferometry [18] respectively. The LL descrip-
tion is also relevant to interacting 1D bosonic systems, cf.,
e.g., recent experiments on ultracold atomic gases that
probe statistical properties of inteference contrast, thus
obtaining information on the full distribution of quantum
noise [19].
Previous theoretical work on current fluctuations in LL

mainly focused on the second moment (shot noise) [20].
The most intriguing observation was related to manifesta-
tions of fractional charges in shot noise. However, full
understanding of the nature of charge transfer processes
(in particular, of charge fractionalization [21]) requires the
analysis of the FCS. The latter has been studied in a biased
LL with an impurity [22]. While an analytical solution via
the thermodynamic Bethe ansatz can be found [22], it is in
general implicit and very cumbersome.
In this work we study the statistical properties of finite

frequency current fluctuations in nonequilibrium LL con-
ductor with arbitrary energy distribution of electrons.
Employing the recently developed nonequilibrium boson-
ization technique [23], we find an exact solution of this
problem. We show that the full distribution of current noise
is closely related to the phenomenon of charge fractional-
ization. We demonstrate that the time resolved FCS of LL
reduces to the one of a noninteracting model with frac-
tional charges calculated below.
We consider a LL conductor geometry schematically

shown in Fig. 1. Our goal is to solve the FCS problem in
the presence of electron interaction. We assume that the
spatially dependent interaction strength gðxÞ vanishes out-
side the interval ½�L=2; L=2�; this way of modeling leads
was introduced in Refs. [24–26] to study the conductance
of LL wire. To describe the FCS of charge transfer,
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we define a probability distribution function p�ðnÞ for n
electrons to pass through the cross section during the time
interval � (related to the noise moments at frequencies ��1)
and a generating function �ð�Þ ¼ P1

n¼�1 p�ðnÞein�.
Let us first discuss the noninteracting case, where �ð�Þ

has been calculated by means of Landauer approach [6].
For an ideal quantum wire (with no scattering inside the
wire) the generating function of the FCS is given by

�ð�Þ ¼ �R½�RðtÞ��L½�LðtÞ�: (1)

Here, � ¼ R, L labels right and left movers and

��½��ðtÞ� ¼ det½1þ ðe�i�� � 1Þn�� (2)

is a Fredholm determinant (of the Toeplitz type) of the
counting operator built of fermionic distribution function
n�ð�Þ and a time-dependent scattering phase ��ðtÞ, with �

and t understood as canonically conjugate variables. In
Eq. (1) and below we assume normalization of the deter-
minant �� to its value for equilibrium, zero-temperature

distribution. The phase ��ðtÞ is given by

��ðtÞ ¼ ��w�ðt; 0Þ; (3)

where we have defined a window function w�ðt;~tÞ ¼
�ð~t� tÞ � �ð~t� t� �Þ. We use the convention that in
formulas � is understood as � ¼ �1 for right or left
movers. In the long time limit the Fredholm determinant
(2) can be easily evaluated analytically; in a more general
situation it can be efficiently studied numerically [27].
Below we show that for the interacting case, the generating
function of the FCS obeys the form of Eq. (1). All electron
interaction effects are encoded in the time-dependent scat-
tering phases ��ðtÞ.

On the microscopic level the problem is described by the
Keldysh action S ¼ S0½c � þ See½c �, written in terms of
fermionic fields [28],

S0½c � ¼ i
X
�

Z
c
dt

Z
dxc y

�@�c �;

See½c � ¼ �X
�

Z
c
dt

Z
dxgðxÞð	�	�� þ 	�	�Þ:

Here 	� ¼ c y
�c � are density fields, @� ¼ @t þ �v@x, v is

the Fermi velocity. The nonequilibrium bosonization

approach allows us to reformulate this theory in terms of
bosonic (density) fields. The interacting part of the action,
See, is already expressed in terms of density modes 	�.

Following rotation in Keldysh space See¼
P

��0
R
dtdxgðxÞ

	� �	�0 , while the free part of the action, where information

concerning the state of the noninteracting fermionic system
is encoded, reads

S0 ¼
X
�

ð�	��
a�1

� �	� � i lnZ�½ �
��Þ: (4)

Here we have decomposed the bosonic variables into clas-

sical and quantum components, 	, �	 ¼ ð	þ � 	�Þ=
ffiffiffi
2

p
,

where the indices þ and � refer to the two branches of
the Keldysh contour; �a

� is the advanced component of

polarization operator, and Z�½ �
�� is a partition function of
free fermions moving in the field

�
� ¼ �a�1

� �	�;

�a
�ð!; qÞ ¼ �q=2�ð�vq�!� i0Þ:

(5)

Expansion of Z�½ �
�� in �
�ðt; xÞ generates an infinite se-

ries, i lnZ�½ �
�� ¼
P

nð�1Þnþ1 �
n
�S�n=n, governed by irre-

ducible fermionic density correlation functions,
S�nðt1; x1; . . . ; tn; xnÞ � hh	�1	2 . . .	�nii, representing

cumulants of quantum noise [6].
To find the generating function for the FCS of charge

transferred through a cross-section x ¼ X during a time
interval �, one needs to calculate the correlation function

�ð�; XÞ ¼ hei�Qð�;XÞe�i�Qð0;XÞi; (6)

where Qðt; XÞ ¼ R
X
�1 ð	RðxÞ þ 	LðxÞÞdx is the electric

charge situated on the left side of the point X at the time
t. Note a similarity between the problem of FCS and that of
tunneling spectroscopy [23]. The latter amounts to evalu-
ation of a single-particle Green function. In both cases one
needs to find a correlation function of exponentials of
bosonic operators that are linear combinations of the right
and left density fields. A major difference stems from the
fact that the operators e�i�Q in Eq. (6) contain a sum of left
and right densities in the exponential, whereas the fermi-

onic operators c �, c
y
� contain only 	�.

We now proceed with calculation of the generating
function (6); technical details are outlined in the supple-
mentary material [29]. We find that the FCS generating
function has the form of Eq. (1), as in the case of free
fermions. The time-dependent scattering phases ��ðtÞ are
expressed through plasmon reflection and transmission
coefficients r�, t� at the left (I/II; � ¼ L) and right (II/

III; � ¼ R) boundaries; r2� þ t2� ¼ 1. Multiple scattering

off these boundaries gives rise to an infinite sequence of
scattering phase pulses [cf. Equation (7)]. If the boundary
is smooth (on the scale of the plasmon wave length), there
is no plasmon reflection, r� ’ 0. In the opposite limit of a

sharp boundary we have r� ¼ ð1� KÞ=ð1þ KÞ.
In contrast with the free fermion case, the statistics of

current fluctuations in the LL conductor depend on the

nR nL

K(x)

IIII

LL

K=1

II

L/2−L/2X 0

X

B A

FIG. 1 (color online). Schematic view of noise detection in LL
conductor. The positions of the charge detector inside (A) and
outside (B) of interacting region are indicated. The x-dependent
LL parameter KðxÞ for smooth (solid line) and sharp (dashed
line) boundaries is also shown.

PRL 105, 256802 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 DECEMBER 2010

256802-2



position of the measuring device (see Fig. 1). Let us first
consider the case where the current fluctuations are
measured in the middle of an interacting region (X ¼ 0,
position A in Fig. 1). We thus find [29] that time-dependent
scattering phases consist of a sequence of pulses

��ðtÞ ¼
X1
n¼0

��;nw�ðt; tnÞ (7)

with partial phase shifts

��;2n ¼ ��t��

ffiffiffiffi
K

p
rn�r

n�� � ��e��;2n; (8)

��;2nþ1 ¼ ��t��

ffiffiffiffi
K

p
rnþ1
� rn�� � ��e��;2nþ1: (9)

The beginning of the nth pulse occurs at time tn ¼
ðnþ 1=2� 1=2KÞL=u. The sequence of pulses ��ðtÞ is

shown in Fig. 2 for the cases of sharp and smooth bounda-
ries between the interacting and noninteracting regions.

In the limit of very low frequencies (� � L=u) all pulses
(7) overlap and the scattering phase can be approximated
by ��ðtÞ ’ w�ðt; 0Þ

P1
n¼0 ��;n. In this limit of long wave-

length the interacting or noninteracting boundaries appear
to be sharp. This yields

P1
n¼0 ��;n ¼ ��. As expected

[24–26] the effects of interaction in this limit disappear
and one is back to the FCS of free fermions [6].

In the opposite case (� � L=u) the interference between
different plasmon pulses may be neglected and the result
splits into a product

��½��ðtÞ� ’
Y1
n¼0

���ð��;nÞ; ��;n � ��e��;n; (10)

with each factor representing a contribution of a single
phase pulse ��;nðtÞ ¼ ��;nw�ðt; 0Þ. Remarkably, plasmon

scattering gives rise to charge fractionalization, which
splits the scattering phase into an infinite series of pulses.

On a technical level, the Fredholm determinant of the
counting operator is now replaced by an infinite product
of determinants, each calculated with a corresponding
scattering phase. The FCS of the LL then becomes a
superposition of FCS of noninteracting electrons with frac-
tional charges e��;n. For the case of smooth boundaries we

get only one fractional charge, e��;0 ¼
ffiffiffiffi
K

p
. In the opposite

limit of sharp boundaries, we obtain the sequence of frac-
tional charges of the form e��;n¼2Kð1�KÞn=ð1þKÞnþ1.

Focusing on the regime where the counting interval � is
long compared to the inverse energy scale of the distribu-
tions n�ð�Þ, we express ���ð�Þ in the form

ln���ð�Þ¼�
Z d�

2�
fln½1þðe�i��1Þn�ð�Þ�þ i��ð��Þg:

(11)

Substituting (11) in Eqs. (1), (10) and expanding in �, one
can find explicitly all moments of noise.
Consider now the FCS outside the interacting region,

e.g., at X <�L=2 (B in Fig. 1). The analysis follows
closely the one outlined above, hence we present only the
final result. The right and left scattering phases are

�RðtÞ ¼ �

�
w�

�
t;
X

v

�
� rLw�

�
t;
Lþ X

v

�

þ rRt
2
L

X1
n¼0

rnLr
n
Rw�

�
t;
Lþ X

v
þ 2ðnþ 1ÞL

u

��
;

�LðtÞ ¼ ��tLtR
X1
n¼0

rnLr
n
Rw�

�
t;
2nL

u
� X

v
þ v� u

vu
L

�
:

Current fluctuations measured in the noninteracting region
at finite frequency (� � L=u) differ from those at the
interacting part of LL (8). Here too the FCS takes the
form of superposition of noninteracting FCS’s, but with a
new set of fractional charges:

e�R;0 ¼ 1; e�R;1 ¼ �rL; e�R;nþ2 ¼ t2Lr
n
Lr

nþ1
R ;

e�L;n ¼ tLtRr
n
Lr

n
R ðn ¼ 0; 1; . . .Þ: (12)

In the universal ultra-low-frequency limit (� � L=u) the
effects of interaction again disappear, and the result for the
FCS of free fermions is recovered.
To conclude, we provide a brief overview of the physics

discussed here. We have calculated the FCS in a LL
conductor. The result is cast in terms of a Fredholm deter-
minant of the counting operator. The boundaries between
the interacting and noninteracting regions of the wire give
rise to (in general, multiple) plasmon scattering. This gen-
erates plasmon wavelets corresponding to fractionally
charged ‘‘particles.’’ As a result, for a counting time inter-
val � small compared with the plasmon time-of-flight
through the interacting region, L=u, the FCS is a superpo-
sition of counting statistics of noninteracting particles with
fractional charges e��;n. Let us stress that the FCS contains

more complete information about the system than the
second moment (noise). As an example, for a symmetric

0
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δ R
/λ

0

0.5

1

1.5

2

t

-0.4

-0.2

0

δ L
/λ

t
-2

-1.5

-1

-0.5

0

a)

b)

c)

d)

FIG. 2 (color online). Phases �� entering Eq. (1) for the
measuring device located at X ¼ 0, for sharp (a),(b) and adia-
batic (c),(d) boundaries (K ¼ 1=3).
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system (rL ¼ rR) the noise acquires the factor K due to
interaction. By itself, this is not sufficient to make a
conclusion about the value of fractional charges and the
character of correlations between them.

The fractionalization process that manifests itself in the
FCS caculated above is solely due to the interacting or
noninteracting boundary scattering [25]. Fractionalization
due to tunneling into a LL [30] does not show up here:
technically this is since the operator Q in Eq. (6) is deter-
mined by a sum of 	L and 	R.

How is the notion of charge fractionalization compatible
with charge quantization? The above analysis was based on
the bosonization approach with the density 	� slowly

varying on the scale of the inverse Fermi wave vector
k�1
F . This corresponds to the situation where the measure-
ment procedure is smooth on the scale k�1

F . In this situation
the above results are valid for any counting field �: our
detector may count a fractional charge residing in some
volume of space. In the opposite limit, where the spatial
resolution of our measurement is sharp on the scale k�1

F ,
the measured charge should be integer, i.e., the FCS should
satisfy �ð�Þ ¼ �ð�þ 2�Þ. In the bosonization formalism,
charge quantization emerges by taking into account fast
oscillatory contributions to the density 	� [31]. This will

not affect the moments of FCS (which are obtained as
derivatives of �ð�Þ at � ¼ 0) and, more generally, the
form of �ð�Þ in the range ½��;��. Beyond this interval,
the FCS will be continued periodically, in agreement with
the charge quantization requirement.
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